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Abstract: Brain tissue segmentation (BTS) in MRI is essential for diagnosing neurological disorders, mapping brain structures, and analyzing
disease progression. A major challenge in BTS is intensity inhomogeneity, where non-uniform illumination in MRI scans causes intensity
variations, making it difficult to accurately differentiate gray matter (GM), cerebrospinal fluid (CSF), and white matter (WM). To address
these challenges, a novel deep learning-based DEEP-BTS model has been proposed for BTS with brain MRI images. The input images are
collected from the BrainWeb dataset, where MRI images undergo skull stripping to remove unnecessary regions. After skull stripping, the
collected images are pre-processed using a contrast stretching adaptive trilateral filter (CSATF) to improve image quality, reduce noise
artifacts, and perform augmentation to increase data diversity to ensure robust model training. The pre-processed images are then fed into
the ResU-Net, which segments different brain tissues, including CSF, GM, and WM. The proposed DEEP-BTS model is evaluated based on
its accuracy (AC), specificity (SP), recall (RE), precision (PR), F1 score (F1), Jaccard index (JI), and Dice index (DI). The proposed DEEP-
BTS achieved a segmentation accuracy of 98.91 % for BTS. The proposed ResU-Net outperformed Fuzzy C-Means, M-Net, and U-Net
methods, achieving 98.33 % CSF, 98.04 % GM, and 99.15 % WM, indicating improved segmentation accuracy.
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1. INTRODUCTION
The human brain, often observed as the epicenter of

obtained by MRI, brain image segmentation estimates an
annotated (labeled) image. This image is divided into

nervous activity, is one of the body’s most vital yet intricate
organs [1], [2]. A tumor is a collection of abnormal swelling
of brain cells in the nervous system [3]. High-resolution brain
images with a range of contrasts can be obtained using MR,
a non-invasive and safe imaging technique [4], [5]. Its
abilities have led to its widespread use in diagnosing
neurological conditions. There is interest in assessing how the
brains of infants and adults develop, as MRI provides
a powerful non-invasive technique for studying brain
anatomy and function [6], [7]. This interest arises because
MRI produces several cross-sectional images with varying
contrasts, enabling safe and non-invasive investigation of the
brain [8]. Brain image segmentation is crucial for both basic
neuroscience research and clinical diagnosis to evaluate
neurological disorders [9], [10]. Given a brain image, usually
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multiple anatomical/structural regions, and the set for each
voxel is created beforehand [11]. Instead of relying on
specialists’ visual inspection, segmentation allows for
objective diagnosis and study by providing a quantitative
assessment of brain tissue volume [12].

The accuracy and processing efficiency of deep learning
(DL)-based automatic segmentation techniques are
significantly higher than those of conventional techniques
[13]. By precisely identifying brain regions of interest and
distinguishing them from healthy brain tissue, DL techniques
enable more precise quantitative analysis [14]. Many clinical
and neurological studies depend on the segmentation of the
brain's gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) [15]. This DL-based segmentation
supports image-guided procedures, makes surgical planning
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easier, and allows for the visualization and investigation of
anatomical components [16], [17]. Additionally, DL-based
techniques have made significant progress in segmenting
brain tissue, including that of adults, newborns, and fetuses
[18]. Segmenting brain MRI is challenging due to complex
structures and intensity variations. Accurate segmentation of
patients using MRI remains difficult for more effective
diagnosis and treatment. Furthermore, automatic seg-
mentation is challenging because of the complexity and
diversity of brain tissues. In this paper, a novel DL-based
DEEP-BTS model is proposed for brain tissue segmentation
(BTS) with brain MRI. The contributions of this work are
summarized as follows:

o The first step is skull stripping, which removes the skull
and scalp from the MRI images. After skull stripping,
the images are enhanced using contrast stretching
adaptive trilateral filter (CSATF) to improve tissue
contrast and reduce noise while preserving important
details.

o The noise-free images are then fed into the ResU-Net
architecture. This model combines U-Net’s efficient
segmentation capabilities with ResNet residual
connections, allowing it to learn complex features of
brain tissues while maintaining accuracy.

e The ResU-Net model segments the MRI images into
different brain regions, including GM, CSF, and WM.

The structure of the paper is organized as follows:

Section 2 presents the literature survey; Section 3 explains
the DEEP-BTS model; Section 4 provides the performance
outcomes and comparative analysis; and Section 5 concludes
with the conclusion and future work.

2. LITERATURE SURVEY

In recent years, researchers have proposed numerous
approaches to improve the accuracy of BTS segmentation.
This section summarizes recent machine learning (ML) and
DL studies focused on segmenting various BTS conditions
using image-based data and advanced computational
techniques.

In 2024, Mohammadiet al. [19] proposed a BTS that
addresses Intensity Non-Uniformity artifacts and Multiple
Sclerosis lesions. Compared to previous methods for BTS and
Multiple Sclerosis lesion segmentation, the proposed
methodology demonstrates significant improvement in the
Dice index (DI), particularly under high noise and artifact
conditions. Experimental results show that the recommended
technique outperforms FCB Former, U-Net, and Attention U-
Net in terms of DI performance in the BTS.

In 2024, Kollem [20] introduced a technique for classifying
and segmenting MRI brain tumor tissue using an optimal
SVM. To achieve a sparse representation of an image's
smooth contour, the contourlet transform uses a twin filter
bank structure consisting of a directional filter and the
Laplacian pyramid.

In 2024, Gudise et al. [21] proposed an enhanced firefly
algorithm based on chaos, integrated with fuzzy C-eans

(CEFAFCM), to separate tissues from brain MRIs. The
Firefly Algorithm (FA) and a chaotic map are used together
with a spatially modified FCM method called CEFAFCM to
initialize the firefly population. Experimental results show
that the proposed method outperforms several existing brain
MRI segmentation techniques, including FCM, BCFCM,
FAFCM, and En-FAFCM.

In 2024, Daoudi and Mahmoudi [22] proposed WM, GM,
and CSF tissue classifications for MR brain imaging. To
improve treatment accuracy, the proposed segmentation
procedure combines two algorithms: Whale Optimization
Algorithm (WOA) and the Hidden Markov Random Field
(HMRF).

In 2021, Veluchamy and Subramani [23] proposed
a segmentation method for brain tissue in a medical decision
support system. Quantitative parameters such as peak signal-
to-noise ratio (PSNR), discrete entropy, specificity (SP), F1
score (F1), accuracy (AC), Jaccard index (J1), and DI are used
to compare the proposed approach with other current
approaches. Experiments indicate that the proposed technique
achieves a reasonable balance between noise and intensity
inhomogeneity.

In 2020, Yamanakkanavar and Lee [24] proposed a patch-
wise M-net to automatically segment MRI images of the
brain. According to experimental data, the proposed approach
outperformed state-of-the-art methods, achieving average
segmentation accuracy of 95.44 % for GM, 94.81 % for CS,
and 96.33 % for WM.

In 2021, Long et al. [25] introduced a Multi-Scale Learning
U-Net Based Encoding-Decoding Method for BTS in MRI.
The study also developed a multi-branch output structure that
generates more precise, edge-preserving forecasting maps by
combining dense neighboring prediction features at dissi-
milar scales during the decoding stage.

In 2023, Karimi et al. [26] proposed a U-Net for learning
to separate the fetal brain tissue from noise annotations. The
proposed techniques appropriately account for tissue
boundary ambiguity. The approach produced results that
were significantly more accurate than several advanced
techniques, with U-Net being the closest competitor.

From this literature, existing techniques for BTS using
various ML and DL models exhibit several limitations. One
major challenge in BTS is the intensity of homogeneity
caused by MRl artifacts. This leads to non-uniform brightness
across the image, making it difficult to distinguish between
different tissue types. Traditional thresholding or clustering
methods struggle with this variation, reducing segmentation
accuracy. Additionally, the presence of noise and partial
volume effects further complicates boundary detection. To
address these problems, a novel DEEP-BTS method was
introduced for the accurate classification of BTS.

3. Prorosep DEEP-BTS

In this research, a novel DL-based DEEP-BTS model is
developed for BTS using brain MRI images. Fig. 1 shows the
DEEP-BTS methodology.
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Fig. 1. Proposed DEEP-BTS methodology.

A. Dataset description

Brain MRI scans are extracted from the BrainWeb dataset.
The popular synthetic MRI dataset BrainWeb offers
controlled situations with varying intensity non-uniformities
(RF inhomogeneities) and noise levels. Key characteristics
include RF inhomogeneity levels of 0 %, 20 %, and 40 %,
which simulate intensity non-uniformities, and noise levels of
0 %, 1 %, 3 %, and 5 %. The training set contains 36 images
from all noise and RF levels, the validation set contains 12
images, and the test set contains 57 images.

B. Pre-processing

In pre-processing to enhance the quality of MRI images,
skull stripping is performed first. After stripping the skull
from the input MRI image, the MRI image is pre-processed
using CSATF. CSATF combines two filters: contrast
stretching (CS) and adaptive trilateral (AT) filter.

Contrast stretching:

In this denoising phase, each original intensity value is
replaced, and histogram comparisons are conducted using

a locally modified contrast-stretching adjustment. A new
level is assigned to each pixel by applying a flexible transfer
function derived from the characteristics of the MRI images.

Range = |Qmax— Qminl 1)

where @ is the input image, and the calculation of the strength
range of the input determines the range. Here Q. and Qpin
are the maximum and minimum values of the input image for
the new intensity. Each pixel is given an additional intensity
using the following equations:

if Qv = Qmax
Jif Qu = Qmin

Qn-0y
Qn+0N

X, = { @

1, = M — /(Range — M)? 3)

Each pixel value is altered using the given formulas, where
M ranges between 0.01 and 0.02.
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Adaptive trilateral filter:

The MRIs are pre-processed using the ATF to remove
noise artifacts. It implements the guiding principles of the
bilateral filter. The issue of high-gradient zones being
ineffectively filtered by bilateral filters is resolved by using
a trilateral filter under tilting. When a bilateral filter is applied
to the image data, p should average highly related
surrounding pixels and eliminate dissimilar pixels, yielding
the tilting angle hy of a trilateral filter at the target pixel.

1
ho@) =52, ). foe@p) 2fy f) @

When the kernel is tilted, the trilateral filter's e (.) and
z (.) functions become non-orthogonal. Equation (5) estab-
lishes the value of each pixel at this plane.

Jj(a,p) = f(@) + he.(|lg = pI]) ()
where |g — p| is the multi-dimensional spacing between g
and f(q), represented by g at a target pixel, and hy is the
tilting angle. To find the output of a trilateral filter, the
resulting image is first passed through a bilateral filter, and

then the value j is removed from the surrounding area of the
target pixel.

fol@) = fin @) + t(y)A (6)
where A is the spatial distance between pixels g and p, and
fo(q) is the output function. Tilting improves the filter's
capacity to smooth high-gradient zones. It is insufficient
because trilateral filter failure can still occur when tilting
happens in areas with significant gradient variations. Data
augmentation is an essential pre-processing technique that
uses synthetic data to help the model learn and generalize
features better. The ideal way to support the network’s
learning of the desired features is to use data augmentation.
Fig. 2 shows the pre-processing stages.

C. Segmentation

The noise-free images are fed into the ResU-Net [27]
model, which segments different brain tissues, including GM,
CSF, and WM. To address the issue of training degradation
as network layer depth increases, each convolutional (Conv)
layer in the U-Net model encoding path is replaced with
aresidual learning block. Fig. 3 depicts the ResU-Net
architecture.
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Fig. 2. Pre-processing step in the proposed method.
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Fig. 3. Architecture of ResU-Net.
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The encoding path consists of three components: an input
unit, a residual unit, and a head unit. The head unit includes a
BN layer and a ReL U after two conv layers. The first residual
unit contains three residual blocks layered with nine conv
layers. The second residual unit comprises four residual
blocks layered with twelve conv layers. The third residual
unit consists of six residual blocks and 18 conv layers. The
fourth residual unit contains three residual blocks and nine
conv layers. In this work, default parameters were used for
the residual unit structures. An output unit, one addition
block, and four concatenation blocks are applied repeatedly
throughout the decoding path. Each concatenation block
consists of a one-to-one conv and upsampling, which reduces
the number of feature channels by half. Output feature maps
are generated from the corresponding residual unit of the
encoding path, as well as output feature maps. Segmentation
results are mapped for binary classification at the last layer of
the decoding path using a sigmoid activation and a 1 x 1
convolution filter. Between each residual block's output
feature and the decoding path's conv layer, copy and crop

operations are applied. Multi-scale feature fusion requires the
cropping and copy operations.

4. RESULTS AND DISCUSSION

This section uses Matlab-2019b and the DL toolbox to
evaluate the proposed model efficiency. The DEEP-BTS
model is assessed using various measures, including AC, SP,
recall (RE), precision (PR), and F1. Benchmarks include the
overall accuracy rates of the DEEP-BTS method, with
performance explicitly specified and assessed.

Fig. 4 presents the simulation results of the proposed
DEEP-BTS model using different input brain MRI image
samples from the BrainWeb dataset. Column 1 displays the
original brain MRI scans, while Column 2 shows the skull
stripping MRI images to focus on brain tissues. Column 3
illustrates the pre-processed MRI scans for improved
segmentation accuracy. Column 4 depicts variations of the
MRI slices generated using augmentation techniques.
Columns 5 to 7 present the segmented outputs for different
brain tissues, such as CSF, WM, and GM.

Input MRI
image

Skull
stripping

Pre-
processing

Data
augmentation

Brain tissue segmentation

WM

Fig. 4. Experimental results of the proposed DEEP-BTS.
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A. Performance analysis

A proposed DEEP-BTS model was evaluated based on SP,
RE, PR, AC, and F1.

Tneg
SP=—"7"-— 7
Tneg + Fpos ( )
T,
RE = —P2> 8
Tpos + Fneg ( )
pp = Toos ©)
Tpos + Fpos
— Tpos + Tneg (10)
Total no.of samples
PR + RE
F1=2(oprE )

Here, T,egand T, represent the true negatives and true
positives of the sample images, while F,., and F,,, represent
the false negatives and false positives of the input images.

Table 1 shows the classification performance achieved by
the proposed DEEP-BTS model for BTS. AC, SP, RE, PR,
and F1 are the metrics used to determine performance. The
proposed DEEP-BTS model achieves a total AC of 98.91 %
using the dataset. The proposed DEEP-BTS model also
achieves overall SP, RE, PR, and F1, values of 97.74 %,
97.48 %, 98.24 %, and 96.51 %, respectively.

Table 1. Performance evaluation of the DEEP-BTS.

Types AC SP RE PR F1

CSF 99.12 9791 9743 98.76 97.65
GM 98.36 96.75 98.14 97.13 96.14
WM 99.25 9858 96.87 98.83 95.76
Overall 9891 97.74 97.48 98.24 96.51

Fig. 5(a) and Fig. 5(b) show the AC and loss graphs of the
DEEP-BTS model. Fig. 5(a) presents the AC curve, with
accuracy and epochs on opposing axes; as the number of
epochs increases, model AC also increases. The epoch versus
loss curve in Fig. 5(b) shows that the model's loss decreases
as the number of epochs increases. The proposed DEEP-BTS
model achieves an AC of 98.91 %.
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Fig. 5. (a) Accuracy and (b) Loss curve of the ResU-Net.

B. Comparative analysis

In this section, the experimental results of DEEP-BTS are
presented, focusing on a comparison of its performance with
other segmentation methods. Fig. 6 offers a summary of the
outcomes for Graphcut, SegNet, and U-Net, which are widely
used in BTS. Segmentation metrics such as the JI and DI are
used to assess the effectiveness of each algorithm. These
metrics help evaluate the precision and accuracy of the
segmentation techniques in various scenarios.

Fig. 6 provides a graphical representation of the ResU-Net.
It compares various segmentation algorithms with ResU-Net
based on JI and DI metrics. The proposed ResU-Net increases
the overall DI by 8.63 %, 9.99 %, and 3.07 for Graphcut,
SegNet, and U-Net, respectively. According to Table 2,
ResU-Net achieves the highest DI of 98.50 and JI of 97.80
among Graphcut, SegNet, and U-Net algorithms. This

analysis indicates that the proposed ResU-Net demonstrates
the best segmentation performance.
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Fig. 6. Comparison of the existing segmentation technique with
ResU-Net.
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Fig. 7 presents segmentation results for standard U-Net
and ResU-Net. Column 1 shows the original input images,
and Column 2 shows the ground truth segmentation images
from the BrainWeb dataset. Columns 3 and 4 display the
segmented results using U-Net and the ResU-Net method,
respectively. ResU-Net reduces the false positive rate while
improving DEEP-BTS performance. Based on the above
comparison, the proposed ResU-Net yields a higher DI value
than the other segmentation approaches. The segmentation
output of ResU-Net is more accurate and closely aligned with
the ground truth, capturing fine structural details and
boundaries compared to other methods.

Table 2 shows a comparison of existing and proposed
models, including Fuzzy C-Means, M-Net, and U-Net.
Different segmentation methods yield varying DI values for
BTS. Fuzzy C-Means [23] achieved DI values of 87 % CSF,
89 % GM, and 91 % WM. M-Net [24] produced similar
results with 87 % CSF, 89 % GM, and 91 % WM. U-Net [28]
performed lower, with 75 % CSF, 79 % GM, and 82 % WM.
The proposed ResU-Net outperformed all methods, achieving
98.33 % CSF, 98.04 % GM, and 99.15 % WM, indicating
improved segmentation accuracy.

Ground truth

ResU-Net (ours)

B
|

)]

Fig. 7. Segmentation comparison of standard U-Net and the proposed ResU-Net.

Table 2. Comparison of existing methods and DEEP-BTS.

Authors Techniques DI

CSF [%] GM [%] WM [%]
Veluchamy, M. and Subramani, B., (2021) [23] Fuzzy C-Means 87 89 91
Yamanakkanavar, N. and Lee, B., 2020 [24] M-Net 87 89 91
Srikrishna, M., et al., (2021) [28] U-Net 75 79 82
Proposed ResU-Net 98.33 98.04 99.15

Table 3. Performance comparison of the DEEP-BTS model with and without skull stripping and CSATF.

Metrics  without skull stripping  with skull stripping with skull stripping
without CSATF without CSATF with CSATF

AC 97.06 97.88 98.91

F1 94.32 95.94 96.51

DI 95.98 97.65 98.50

C. Ablation study

In this analysis, the proposed DEEP-BTS model was
evaluated with and without skull stripping and CSATF for
BTS.

Table 3 presents the comparative performance of DEEP-
BTS under different configurations: with and without skull
stripping and CSATF. Without skull stripping and CSATF,

the model achieved 97.06 % AC, 94.32 % F1, and 95.98 %
DI. Incorporating both skull stripping and CSATF resulted in
the highest performance, with 98.91 % AC, 96.51 % F1, and
98.50 % DI. These results clearly indicate that pre-processing
steps such as skull stripping and CSATF significantly
improve the performance of the DEEP-BTS model in
accurately segmenting brain tissues, with the combination of
both yielding the most effective outcome.
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5. CONCLUSION

This research introduced a novel DEEP-BTS model for
BTS using brain MRI images. The MRI images undergo skull
stripping to remove unnecessary regions. The images are
denoised by a CSATF to improve image quality, reduce noise
artifacts, and for augmentation. The pre-processed images are
given to the ResU-Net model, which segments different brain
tissues, including CSF, GM, and WM. The proposed ResU-
Net increases the overall DI by 8.63 %, 9.99 %, and 3.07 %
for Graphcut, SegNet, and U-Net, respectively. As a result of
the experiment, the proposed method performed 98.91 %
more accurately than the previous method in segmenting the
classes of brain tissues. The proposed ResU-Net out-
performed Fuzzy C-Means, M-Net, and U-Net methods,
achieving 98.33 % CSF, 98.04 % GM, and 99.15 % WM,
indicating improved segmentation accuracy. Future work in
BTS could focus on multi-modal MRI fusion, integrating
FLAIR, T1-weighted and T2-weighted images using DL to
improve segmentation accuracy, especially for pathological
brains.
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