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Abstract: Brain tissue segmentation (BTS) in MRI is essential for diagnosing neurological disorders, mapping brain structures, and analyzing 
disease progression. A major challenge in BTS is intensity inhomogeneity, where non-uniform illumination in MRI scans causes intensity 
variations, making it difficult to accurately differentiate gray matter (GM), cerebrospinal fluid (CSF), and white matter (WM). To address 
these challenges, a novel deep learning-based DEEP-BTS model has been proposed for BTS with brain MRI images. The input images are 

collected from the BrainWeb dataset, where MRI images undergo skull stripping to remove unnecessary regions. After skull stripping, the 
collected images are pre-processed using a contrast stretching adaptive trilateral filter (CSATF) to improve image quality, reduce noise 
artifacts, and perform augmentation to increase data diversity to ensure robust model training. The pre-processed images are then fed into 
the ResU-Net, which segments different brain tissues, including CSF, GM, and WM. The proposed DEEP-BTS model is evaluated based on 
its accuracy (AC), specificity (SP), recall (RE), precision (PR), F1 score (F1), Jaccard index (JI), and Dice index (DI). The proposed DEEP-
BTS achieved a segmentation accuracy of 98.91 % for BTS. The proposed ResU-Net outperformed Fuzzy C-Means, M-Net, and U-Net 
methods, achieving 98.33 % CSF, 98.04 % GM, and 99.15 % WM, indicating improved segmentation accuracy.  
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1. INTRODUCTION 

The human brain, often observed as the epicenter of 

nervous activity, is one of the body’s most vital yet intricate 

organs [1], [2]. A tumor is a collection of abnormal swelling 

of brain cells in the nervous system [3]. High-resolution brain 

images with a range of contrasts can be obtained using MRI, 

a non-invasive and safe imaging technique [4], [5]. Its 

abilities have led to its widespread use in diagnosing 

neurological conditions. There is interest in assessing how the 

brains of infants and adults develop, as MRI provides 

a powerful non-invasive technique for studying brain 

anatomy and function [6], [7]. This interest arises because 

MRI produces several cross-sectional images with varying 

contrasts, enabling safe and non-invasive investigation of the 

brain [8]. Brain image segmentation is crucial for both basic 

neuroscience research and clinical diagnosis to evaluate 

neurological disorders [9], [10]. Given a brain image, usually 

obtained by MRI, brain image segmentation estimates an 

annotated (labeled) image. This image is divided into 

multiple anatomical/structural regions, and the set for each 

voxel is created beforehand [11]. Instead of relying on 

specialists' visual inspection, segmentation allows for 

objective diagnosis and study by providing a quantitative 

assessment of brain tissue volume [12]. 

The accuracy and processing efficiency of deep learning 

(DL)-based automatic segmentation techniques are 

significantly higher than those of conventional techniques 

[13]. By precisely identifying brain regions of interest and 

distinguishing them from healthy brain tissue, DL techniques 

enable more precise quantitative analysis [14]. Many clinical 

and neurological studies depend on the segmentation of the 

brain's gray matter (GM), white matter (WM), and 

cerebrospinal fluid (CSF) [15]. This DL-based segmentation 

supports image-guided procedures, makes surgical planning 
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easier, and allows for the visualization and investigation of 

anatomical components [16], [17]. Additionally, DL-based 

techniques have made significant progress in segmenting 

brain tissue, including that of adults, newborns, and fetuses 

[18]. Segmenting brain MRI is challenging due to complex 

structures and intensity variations. Accurate segmentation of 

patients using MRI remains difficult for more effective 

diagnosis and treatment. Furthermore, automatic seg-

mentation is challenging because of the complexity and 

diversity of brain tissues. In this paper, a novel DL-based 

DEEP-BTS model is proposed for brain tissue segmentation 

(BTS) with brain MRI. The contributions of this work are 

summarized as follows: 

• The first step is skull stripping, which removes the skull 

and scalp from the MRI images. After skull stripping, 

the images are enhanced using contrast stretching 

adaptive trilateral filter (CSATF) to improve tissue 

contrast and reduce noise while preserving important 

details.  

• The noise-free images are then fed into the ResU-Net 

architecture. This model combines U-Net’s efficient 

segmentation capabilities with ResNet residual 

connections, allowing it to learn complex features of 

brain tissues while maintaining accuracy. 

• The ResU-Net model segments the MRI images into 

different brain regions, including GM, CSF, and WM.  

The structure of the paper is organized as follows: 

Section 2 presents the literature survey; Section 3 explains 

the DEEP-BTS model; Section 4 provides the performance 

outcomes and comparative analysis; and Section 5 concludes 

with the conclusion and future work. 

2. LITERATURE SURVEY 

In recent years, researchers have proposed numerous 

approaches to improve the accuracy of BTS segmentation. 

This section summarizes recent machine learning (ML) and 

DL studies focused on segmenting various BTS conditions 

using image-based data and advanced computational 

techniques. 

In 2024, Mohammadiet al. [19] proposed a BTS that 

addresses Intensity Non-Uniformity artifacts and Multiple 

Sclerosis lesions. Compared to previous methods for BTS and 

Multiple Sclerosis lesion segmentation, the proposed 

methodology demonstrates significant improvement in the 

Dice index (DI), particularly under high noise and artifact 

conditions. Experimental results show that the recommended 

technique outperforms FCB Former, U-Net, and Attention U-

Net in terms of DI performance in the BTS. 

In 2024, Kollem [20] introduced a technique for classifying 

and segmenting MRI brain tumor tissue using an optimal 

SVM. To achieve a sparse representation of an image's 

smooth contour, the contourlet transform uses a twin filter 

bank structure consisting of a directional filter and the 

Laplacian pyramid.  

In 2024, Gudise et al. [21] proposed an enhanced firefly 

algorithm based on chaos, integrated with fuzzy C-eans 

(CEFAFCM), to separate tissues from brain MRIs. The 

Firefly Algorithm (FA) and a chaotic map are used together 

with a spatially modified FCM method called CEFAFCM to 

initialize the firefly population. Experimental results show 

that the proposed method outperforms several existing brain 

MRI segmentation techniques, including FCM, BCFCM, 

FAFCM, and En-FAFCM. 

In 2024, Daoudi and Mahmoudi [22] proposed WM, GM, 

and CSF tissue classifications for MR brain imaging. To 

improve treatment accuracy, the proposed segmentation 

procedure combines two algorithms: Whale Optimization 

Algorithm (WOA) and the Hidden Markov Random Field 

(HMRF).  

In 2021, Veluchamy and Subramani [23] proposed 

a segmentation method for brain tissue in a medical decision 

support system. Quantitative parameters such as peak signal-

to-noise ratio (PSNR), discrete entropy, specificity (SP), F1 

score (F1), accuracy (AC), Jaccard index (JI), and DI are used 

to compare the proposed approach with other current 

approaches. Experiments indicate that the proposed technique 

achieves a reasonable balance between noise and intensity 

inhomogeneity. 

In 2020, Yamanakkanavar and Lee [24] proposed a patch-

wise M-net to automatically segment MRI images of the 

brain. According to experimental data, the proposed approach 

outperformed state-of-the-art methods, achieving average 

segmentation accuracy of 95.44 % for GM, 94.81 % for CS, 

and 96.33 % for WM. 

In 2021, Long et al. [25] introduced a Multi-Scale Learning 

U-Net Based Encoding-Decoding Method for BTS in MRI. 

The study also developed a multi-branch output structure that 

generates more precise, edge-preserving forecasting maps by 

combining dense neighboring prediction features at dissi-

milar scales during the decoding stage.  

In 2023, Karimi et al. [26] proposed a U-Net for learning 

to separate the fetal brain tissue from noise annotations. The 

proposed techniques appropriately account for tissue 

boundary ambiguity. The approach produced results that 

were significantly more accurate than several advanced 

techniques, with U-Net being the closest competitor.  

From this literature, existing techniques for BTS using 

various ML and DL models exhibit several limitations. One 

major challenge in BTS is the intensity of homogeneity 

caused by MRI artifacts. This leads to non-uniform brightness 

across the image, making it difficult to distinguish between 

different tissue types. Traditional thresholding or clustering 

methods struggle with this variation, reducing segmentation 

accuracy. Additionally, the presence of noise and partial 

volume effects further complicates boundary detection. To 

address these problems, a novel DEEP-BTS method was 

introduced for the accurate classification of BTS. 

3. PROPOSED DEEP-BTS 

In this research, a novel DL-based DEEP-BTS model is 

developed for BTS using brain MRI images. Fig. 1 shows the 

DEEP-BTS methodology. 
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Fig. 1.  Proposed DEEP-BTS methodology. 

A. Dataset description 

Brain MRI scans are extracted from the BrainWeb dataset. 
The popular synthetic MRI dataset BrainWeb offers 
controlled situations with varying intensity non-uniformities 
(RF inhomogeneities) and noise levels. Key characteristics 
include RF inhomogeneity levels of 0 %, 20 %, and 40 %, 
which simulate intensity non-uniformities, and noise levels of 
0 %, 1 %, 3 %, and 5 %. The training set contains 36 images 
from all noise and RF levels, the validation set contains 12 
images, and the test set contains 57 images. 

B. Pre-processing 

In pre-processing to enhance the quality of MRI images, 
skull stripping is performed first. After stripping the skull 
from the input MRI image, the MRI image is pre-processed 
using CSATF. CSATF combines two filters: contrast 
stretching (CS) and adaptive trilateral (AT) filter. 

Contrast stretching:  

In this denoising phase, each original intensity value is 
replaced, and histogram comparisons are conducted using 

a locally modified contrast-stretching adjustment. A new 
level is assigned to each pixel by applying a flexible transfer 
function derived from the characteristics of the MRI images.  

 

 𝑅𝑎𝑛𝑔𝑒 = |𝑄max−𝑄min| (1) 

 

where  𝑄 is the input image, and the calculation of the strength 

range of the input determines the range. Here 𝑄max  and 𝑄min 

are the maximum and minimum values of the input image for 

the new intensity. Each pixel is given an additional intensity 

using the following equations: 

 

𝑋𝑘 = {
𝑄𝑁−𝜎𝑁     , 𝑖𝑓 𝑄𝑁 = 𝑄max  

 𝑄𝑁+𝜎𝑁      , 𝑖𝑓 𝑄𝑁 =  𝑄min   
 (2) 

 

𝑟𝑛 = 𝑀 − √(𝑅𝑎𝑛𝑔𝑒 − 𝑀)2 (3) 

 

Each pixel value is altered using the given formulas, where 

𝑀 ranges between 0.01 and 0.02.  
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Adaptive trilateral filter:  

The MRIs are pre-processed using the ATF to remove 

noise artifacts. It implements the guiding principles of the 

bilateral filter. The issue of high-gradient zones being 

ineffectively filtered by bilateral filters is resolved by using 

a trilateral filter under tilting. When a bilateral filter is applied 

to the image data, 𝑝 should average highly related 

surrounding pixels and eliminate dissimilar pixels, yielding 

the tilting angle ℎ𝜃 of a trilateral filter at the target pixel.  

 

ℎ𝜃(𝑞) =
1

𝑙𝜃

∑ ∑ 𝑓𝑝
𝑝𝑞

𝑒(𝑞, 𝑝) 𝑧( 𝑓𝑞 , 𝑓𝑝) (4) 

 
When the kernel is tilted, the trilateral filter's 𝑒 (. ) and 

𝑧 (. ) functions become non-orthogonal. Equation (5) estab-

lishes the value of each pixel at this plane.  

 

𝑗(𝑞, 𝑝) = 𝑓(𝑞) + ℎ𝜃 . (||𝑞 − 𝑝||) (5) 

 

where |𝑞 − 𝑝| is the multi-dimensional spacing between 𝑞 

and 𝑓(𝑞),  represented by 𝑞 at a target pixel, and ℎ𝜃 is the 

tilting angle. To find the output of a trilateral filter, the 

resulting image is first passed through a bilateral filter, and 

then the value 𝑗 is removed from the surrounding area of the 

target pixel.  

 

𝑓o(𝑞) = 𝑓in(𝑦) + 𝑡(𝑦)∆ (6) 

 

where ∆ is the spatial distance between pixels 𝑞 and 𝑝, and 

𝑓o(𝑞) is the output function. Tilting improves the filter's 
capacity to smooth high-gradient zones. It is insufficient 

because trilateral filter failure can still occur when tilting 

happens in areas with significant gradient variations. Data 

augmentation is an essential pre-processing technique that 

uses synthetic data to help the model learn and generalize 

features better. The ideal way to support the network's 

learning of the desired features is to use data augmentation. 

Fig. 2 shows the pre-processing stages. 

C. Segmentation 

The noise-free images are fed into the ResU-Net [27] 

model, which segments different brain tissues, including GM, 

CSF,  and  WM.  To address the issue of training degradation 

as network layer depth increases, each convolutional (Conv) 

layer in the U-Net model encoding path is replaced with 

a residual learning block. Fig. 3 depicts the ResU-Net 

architecture. 

 

Fig. 2.  Pre-processing step in the proposed method. 

 

Fig. 3.  Architecture of ResU-Net.
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The encoding path consists of three components: an input 

unit, a residual unit, and a head unit. The head unit includes a 

BN layer and a ReLU after two conv layers. The first residual 

unit contains three residual blocks layered with nine conv 

layers.  The second residual unit comprises four residual 

blocks layered with twelve conv layers. The third residual 

unit consists of six residual blocks and 18 conv layers. The 

fourth residual unit contains three residual blocks and nine 

conv layers. In this work, default parameters were used for 

the residual unit structures. An output unit, one addition 
block, and four concatenation blocks are applied repeatedly 

throughout the decoding path. Each concatenation block 

consists of a one-to-one conv and upsampling, which reduces 

the number of feature channels by half. Output feature maps 

are generated from the corresponding residual unit of the 

encoding path, as well as output feature maps. Segmentation 

results are mapped for binary classification at the last layer of 

the decoding path using a sigmoid activation and a 1 × 1 

convolution filter. Between each residual block's output 

feature  and  the  decoding  path's  conv layer,  copy and crop 

 

operations are applied. Multi-scale feature fusion requires the 

cropping and copy operations. 

4. RESULTS AND DISCUSSION 

This section uses Matlab-2019b and the DL toolbox to 

evaluate the proposed model efficiency. The DEEP-BTS 

model is assessed using various measures, including AC, SP, 

recall (RE), precision (PR), and F1. Benchmarks include the 

overall accuracy rates of the DEEP-BTS method, with 

performance explicitly specified and assessed.  

Fig. 4 presents the simulation results of the proposed 

DEEP-BTS model using different input brain MRI image 

samples from the BrainWeb dataset. Column 1 displays the 

original brain MRI scans, while Column 2 shows the skull 

stripping MRI images to focus on brain tissues. Column 3 
illustrates the pre-processed MRI scans for improved 

segmentation accuracy. Column 4 depicts variations of the 

MRI slices generated using augmentation techniques. 

Columns 5 to 7 present the segmented outputs for different 

brain tissues, such as CSF, WM, and GM.

 

Fig. 4.  Experimental results of the proposed DEEP-BTS. 
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A. Performance analysis 

A proposed DEEP-BTS model was evaluated based on SP, 

RE, PR, AC, and F1. 
 

𝑆𝑃 =
𝑇neg

𝑇neg + 𝐹pos

 (7) 

 

𝑅𝐸 =
𝑇pos

𝑇pos + 𝐹neg

 (8) 

 

𝑃𝑅 =
𝑇pos

𝑇pos + 𝐹pos

 
(9) 

 

𝐴𝐶 =
𝑇pos + 𝑇neg

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (10) 

 

𝐹1 = 2 ( 
𝑃𝑅 + 𝑅𝐸

𝑃𝑅 + 𝑅𝐸
 ) (11) 

 

Here, 𝑇neg and 𝑇pos represent the true negatives and true 

positives of the sample images, while 𝐹neg and 𝐹pos represent 

the false negatives and false positives of the input images. 

Table 1 shows the classification performance achieved by 

the proposed DEEP-BTS model for BTS. AC, SP, RE, PR, 

and F1 are the metrics used to determine performance. The 

proposed DEEP-BTS model achieves a total AC of 98.91 % 

using the dataset. The proposed DEEP-BTS model also 

achieves overall SP, RE, PR, and F1, values of 97.74 %, 

97.48 %, 98.24 %, and 96.51 %, respectively.  

Table 1.  Performance evaluation of the DEEP-BTS. 

Types  AC SP RE PR F1  

CSF 99.12 97.91 97.43 98.76 97.65 

GM 98.36 96.75 98.14 97.13 96.14 

WM 99.25 98.58 96.87 98.83 95.76 

Overall 98.91 97.74 97.48 98.24 96.51 

 
Fig. 5(a) and Fig. 5(b) show the AC and loss graphs of the 

DEEP-BTS model. Fig. 5(a) presents the AC curve, with 

accuracy and epochs on opposing axes; as the number of 

epochs increases, model AC also increases. The epoch versus 

loss curve in Fig. 5(b) shows that the model's loss decreases 

as the number of epochs increases. The proposed DEEP-BTS 

model achieves an AC of 98.91 %. 

 

 

 
                                                                  (a)                                                                                          (b) 

Fig. 5.  (a) Accuracy and (b) Loss curve of the ResU-Net. 

 

B. Comparative analysis 

In this section, the experimental results of DEEP-BTS are 

presented, focusing on a comparison of its performance with 

other segmentation methods. Fig. 6 offers a summary of the 

outcomes for Graphcut, SegNet, and U-Net, which are widely 

used in BTS. Segmentation metrics such as the JI and DI are 

used to assess the effectiveness of each algorithm. These 

metrics help evaluate the precision and accuracy of the 

segmentation techniques in various scenarios.  

Fig. 6 provides a graphical representation of the ResU-Net. 

It compares various segmentation algorithms with ResU-Net 
based on JI and DI metrics. The proposed ResU-Net increases 

the overall DI by 8.63 %, 9.99 %, and 3.07 for Graphcut, 

SegNet, and U-Net, respectively. According to Table 2, 

ResU-Net achieves the highest DI of 98.50 and JI of 97.80 

among Graphcut, SegNet, and U-Net algorithms. This 

analysis indicates that the proposed ResU-Net demonstrates 

the best segmentation performance. 

 

Fig. 6.  Comparison of the existing segmentation technique with 

ResU-Net. 
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Fig. 7 presents segmentation results for standard U-Net 

and ResU-Net. Column 1 shows the original input images, 

and Column 2 shows the ground truth segmentation images 

from the BrainWeb dataset. Columns 3 and 4 display the 

segmented results using U-Net and the ResU-Net method, 

respectively. ResU-Net reduces the false positive rate while 

improving DEEP-BTS performance. Based on the above 

comparison, the proposed ResU-Net yields a higher DI value 

than the other segmentation approaches. The segmentation 

output of ResU-Net is more accurate and closely aligned with 
the ground truth, capturing fine structural details and 

boundaries compared to other methods. 

Table 2 shows a comparison of existing and proposed 

models, including Fuzzy C-Means, M-Net, and U-Net. 

Different segmentation methods yield varying DI values for 

BTS. Fuzzy C-Means [23] achieved DI values of 87 % CSF, 

89 % GM, and 91 % WM. M-Net [24] produced similar 

results with 87 % CSF, 89 % GM, and 91 % WM. U-Net [28] 

performed lower, with 75 % CSF, 79 % GM, and 82 % WM. 

The proposed ResU-Net outperformed all methods, achieving 

98.33 % CSF, 98.04 % GM, and 99.15 % WM, indicating 

improved segmentation accuracy. 

 

 

 

Fig. 7.  Segmentation comparison of standard U-Net and the proposed ResU-Net. 

 
Table 2.  Comparison of existing methods and DEEP-BTS. 

Authors Techniques DI 

CSF [%] GM [%] WM [%] 

Veluchamy, M. and Subramani, B., (2021) [23] Fuzzy C-Means 87 89 91 
Yamanakkanavar, N. and Lee, B., 2020 [24] M-Net 87 89 91 

Srikrishna, M., et al., (2021) [28] U-Net 75 79 82 

Proposed ResU-Net 98.33 98.04 99.15 

 

Table 3.  Performance comparison of the DEEP-BTS model with and without skull stripping and CSATF. 

Metrics without skull stripping  

without CSATF 

with skull stripping  

without CSATF 

with skull stripping  

with CSATF 

AC 97.06 97.88 98.91 

F1 94.32 95.94 96.51 

DI 95.98 97.65 98.50 

 

 

C. Ablation study 

In this analysis, the proposed DEEP-BTS model was 

evaluated with and without skull stripping and CSATF for 

BTS.  

Table 3 presents the comparative performance of DEEP-

BTS under different configurations: with and without skull 

stripping  and CSATF.  Without skull stripping and  CSATF, 

the model achieved 97.06 % AC, 94.32 % F1, and 95.98 % 

DI. Incorporating both skull stripping and CSATF resulted in 

the highest performance, with 98.91 % AC, 96.51 % F1, and 

98.50 % DI. These results clearly indicate that pre-processing 

steps such as skull stripping and CSATF significantly 
improve the performance of the DEEP-BTS model in 

accurately segmenting brain tissues, with the combination of 

both yielding the most effective outcome. 
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5. CONCLUSION 

This research introduced a novel DEEP-BTS model for 

BTS using brain MRI images. The MRI images undergo skull 

stripping to remove unnecessary regions. The images are 

denoised by a CSATF to improve image quality, reduce noise 

artifacts, and for augmentation. The pre-processed images are 
given to the ResU-Net model, which segments different brain 

tissues, including CSF, GM, and WM. The proposed ResU-

Net increases the overall DI by 8.63 %, 9.99 %, and 3.07 % 

for Graphcut, SegNet, and U-Net, respectively.  As a result of 

the experiment, the proposed method performed 98.91 % 

more accurately than the previous method in segmenting the 

classes of brain tissues. The proposed ResU-Net out-

performed Fuzzy C-Means, M-Net, and U-Net methods, 

achieving 98.33 % CSF, 98.04 % GM, and 99.15 % WM, 

indicating improved segmentation accuracy. Future work in 

BTS could focus on multi-modal MRI fusion, integrating 

FLAIR, T1-weighted and T2-weighted images using DL to 
improve segmentation accuracy, especially for pathological 

brains.  
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