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Abstract: This work addresses the issues of low diagnostic accuracy and weak generalization in rotating machinery bearing fault diagnosis, 

especially under complex noise conditions. In this paper, a novel bearing fault diagnosis method is proposed. This method, known as 

MACE + PFACNN, combines the minimum average composite entropy (MACE) with a parallel fusion attention convolutional neural 

network (PFACNN). In MACE, the minimum average composite entropy, which is composed of the Renyi entropy and the sample entropy, 

is used as a fitness function to guide the dung beetle optimization algorithm for fault feature extraction. Then, the extracted signal features 

are converted into angle and field and angular difference fields by Gramian angle field transformation. Finally, a PFACNN is used for fault 

diagnosis. Experimental data and bench tests show that the proposed model achieves a classification accuracy of 99.93 %. Compared with 

the baseline model, the noise resistance under complex noise conditions has improved by more than 15 %, and the generalization ability has 

increased by 3.68 %. 
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1. INTRODUCTION 

Bearings are the "joints" of rotating machinery, which 

often have to operate under extreme conditions such as high 

temperatures, high pressure, high speed, high intensity, and 

variable loads. Failure of these components can severely 

compromise the safety of the equipment during operation. 

Therefore, the study of bearing fault diagnosis technology is 

crucial to minimize economic and life losses [1], [2]. 

Current bearing fault diagnosis technologies can be mainly 

categorized into two types: methods based on signal 

processing and those based on artificial intelligence. 

Currently, scientific researchers often study one type of fault 

diagnosis method in isolation. However, it is important to 

recognize that these two approaches are not independent but 

rather form a unified whole. It is a challenge to effectively 

improve the accuracy of fault diagnosis by focusing on only 

one type of method. For example, artificial intelligence (AI) 

techniques can help with the parameter optimization of fault 

diagnosis methods and the classification of faults within 

signal processing. Conversely, signal processing methods can 

improve the data quality of AI techniques and thus increase 

the accuracy and generalization capability of AI-based fault 

diagnosis methods. 

The fault signal feature extraction method represented by 

variational mode decomposition (VMD) can effectively solve 

the modal aliasing phenomenon in empirical mode 

decomposition (EMD) and has attracted the attention of most 

researchers. However, in VMD, the penalty parameters α and 

the decomposition layer 𝑘 need to be specified in advance, 

which leads to human factors affecting the decomposition and 

extraction effect of VMD [3]. The use of optimization 

algorithms to select key parameters for VMD has become 

mainstream in current scientific research. The selection of the 

fitness function is crucial for the proper optimization of these 

parameters. Luo selected a series of time-domain and 

frequency-domain indices as the fitness function to improve 

the whale optimization algorithm to achieve feature 

extraction of the wind turbine gearbox fault signal [4]. Chang 

extracted the fault signal features using the center frequency 

and Pearson correlation coefficient of the modal function as 

the fitness function of the particle swarm optimization (PSO) 

algorithm.[5]. Liu extracted the features of the oil pulse fluid 

pressure signal, achieving good results [6]. Entropy, which is 

a measure of the uncertainty of a random variable, has 

attracted interest in the optimization of VMD parameters and 

the selection of effective modes. Song used the generalized 
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refined composite multiscale dispersion entropy as the fitness 

function for the grasshopper optimization algorithm to 

achieve fault signal extraction for sliding bearings [7]. Wang 

used the energy loss coefficient and information entropy as 

the fitness function to optimize the key parameters of VMD 

and achieved good results [8]. However, the use of single 

entropy as an optimization indicator for VMD parameters and 

as a method to select effective modal components has its 

limitations. For example, sample entropy evaluates the 

complexity of time series by quantifying the probability of 

generating new patterns within the signal. Information 

entropy, on the other hand, is commonly used to measure the 

information content of a system. The different centroids of 

the different entropies can lead to different optimization 

results for the VMD parameters, resulting in significant 

variations in the model's fault diagnosis capability [9], [10]. 

Compared to back propagation (BP), convolutional neural 

network (CNN) has the advantage of detecting the deep 

connections of the data, preventing overfitting and having 

high diagnostic accuracy, which has attracted much attention 

in the academic community [11]. Chao used a CNN to 

identify the high-speed axial plunger pump cavitation 

intensity, which greatly improves the identification accuracy 

[12] Bao et al. used CNN to identify time-varying stress data 

and effectively identified the failure damage of a pipe rack of 

an offshore platform [13]. Jiang applied CNN to the fault 

diagnosis of nuclear power plant bearings. Compared with 

other methods, the fault diagnosis model trained with CNN 

has better anti-noise and generalization ability [14]. However, 

the above CNN-based fault diagnosis methods are based on 

one-dimensional images and grayscale graphs. According to 

research, CNN for two-dimensional image learning ability is 

much higher than that for one-dimensional signals, and the 

grayscale graph cannot clearly represent the relationship 

between signal amplitude and time, and it is easy to ignore 

the bearing fault signal in the time domain [15]. The attention 

mechanism (AM) continuously updates the feature weight 

according to the loss value obtained by network training, and 

gives each feature the weight corresponding to the weight, so 

that the training of the CNN is more effective. Han has used 

AM for fault diagnosis of transmission machinery, which 

improves the computational efficiency and diagnostic 

accuracy of CNN and achieves good results [16]. Xiang used 

AM to fault diagnose the fan fault, and the trained model can 

predict the abnormal state of the fan [17]. Xu applied AM to 

solve the problem of low performance of CNN in complex 

working environments, and the results show that the proposed 

model has good reliability in Guangdong bearing fault 

diagnosis [18]. It should be noted that the focus of AM itself 

is not the same, and there is obviously some deficiency in 

analyzing complex time-varying non-stationary fault signals 

with a single attention mechanism [19]. 

Based on the above analysis, an innovative feature 

parameter called minimum average composite entropy 

(MACE) is introduced in this paper, which can effectively 

compensate for sporadic noise and fault sensitivity. Using this 

parameter as a fitness function for the optimization algorithm 

of the important VMD parameters improves the quality of the 

input signals. In this paper, an innovative fault diagnosis 

algorithm based on a parallel fusion attention convolutional 

neural network (PFACNN) is proposed. By combining with 

MACE, this algorithm significantly improves the accuracy 

and generalization ability of the fault diagnosis model under 

complex noise working conditions. The research framework 

is shown in Fig. 1. 
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Fig. 1.  Research block diagram. 

2. SUBJECT & METHODS 

A. Signal processing method 

Minimum average composite entropy variational mode 

decomposition (MACE-VMD） 

In actual production, fault-bearing signals often contain 

a large amount of noise and invalid signals. If these cannot be 

processed correctly, this significantly impairs the diagnostic 

accuracy of intelligent diagnosis algorithms. VMD can 

represent input signals as a set of modal functions, which is 

widely used in signal processing. Reference is made to the 

decomposition process in the literature [20]. When applying 

VMD, the mode number 𝑘 and the penalty factor α must be 

set artificially. Improper setting of the parameters will 

significantly affect the decomposition effect of the signal 

[21]. As an index that can represent the characteristic 

parameters of the impact signal, Kurtosis (𝑆𝑘) is often used to 

select the key parameters of VMD, but its sensitivity to 

occasional impact noise is too large, which often leads to 

incorrect selection of target parameters [22]. Skewness (𝑆𝑟) 

is limited due to its low fault sensitivity. Therefore, this paper 

innovatively proposes the Renyi Entropy (𝑅𝑒 ), which can 

better balance the periodic shock signal and the occasional 

noise signal. 

When the bearing fault signal 𝒙 = {𝑥(1), 𝑥(2), ⋯ , 𝑥(𝑛)} 

after VMD is the time series of its 𝑘 order mode 

𝑢𝑘 = {𝑢𝑘(1), 𝑢𝑘(2), ⋯ , 𝑢𝑘(𝑛)}, and 𝑅𝑒 of its 𝑘 order mode 

can be defined as: 

 

𝑅𝑒(𝑘) =
(1/𝑁)∑𝑖=1

𝑁  |𝑢𝑘(𝑖)|3

[(1/𝑁)∑𝑖=1
𝑁  |𝑢𝑘(𝑖)|]3

   (1) 
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where 𝑁 is the total number of samples. Using the rolling 

bearing inner ring fault model, investigate the sensitivity of  

𝑅𝑒,  𝑆𝑟 and  𝑆𝑘 to defects and their stability to sporadic noise. 

Fault model of the rolling bearing inner ring:  

 

𝑥(𝑡) = ∑ 𝑎𝑗𝑒−𝑔𝛾(𝑡)𝑐𝑜𝑠 [𝜔0√1 − 𝑔2(𝛾(𝑡) − 𝜏𝑗)]

𝑀

𝑗

 (2) 

 

where 𝑎𝑗 denotes the amplitude of the jth fault impact, 𝑔 

denotes the attenuation coefficient of the bearing, M denotes 

the number of bearing impact excitations, 𝛾(𝑡) denotes the 

pseudocycle time; 𝜏𝑗 denotes the time delay caused by 

relative sliding, and 𝜔0 denotes the fault feature frequency. 

Fig. 2 illustrates the variation of  𝑅𝑒, 𝑆𝑟  and  𝑆𝑘 with the inner 

ring fault defect of rolling bearings. For a better 

understanding, the defect variation is converted into the 

variation of the signal noise ratio (SNR). 

 

Fig. 2.  𝑆𝑘 , 𝑆𝑟 , 𝑅𝑒 schematic diagram of variation with defects. 

Fig. 2 shows the schematic diagram of  𝑆𝑘, 𝑆𝑟  and 𝑅𝑒 with 

the fault defect of the rolling bearing. The defect changes 

have been converted to SNR changes for better 

understanding.  

As can be seen in Fig. 2,  𝑆𝑟  is not sensitive to the defect 

size, and  𝑅𝑒 has a similar trend to  𝑆𝑘. It can be seen that  𝑅𝑒 

and  𝑆𝑘 have high sensitivity to fault defect changes and can 

indicate bearing faults more accurately. This phenomenon 

can be similar to outer ring failure and rolling body failure 

and is not described here. As shown in Fig. 2,  𝑆𝑟  is 

insensitive to defect size, while 𝑆𝑘 and 𝑅𝑒 exhibit similar 

variation trends. This indicates that 𝑆𝑘 and 𝑅𝑒are highly 

sensitive to fault defect variation and can accurately indicate 

bearing faults. This phenomenon shows similar variation 

trends for outer race faults and rolling element faults, which 

will not be discussed further here. Fig. 3 illustrates the 

variations of  𝑆𝑘, 𝑆𝑟  and  𝑅𝑒.  

Fig. 3 shows the variation of  𝑆𝑘, 𝑆𝑟and 𝑅𝑒 under white 

noise and composite noise conditions, with the amplitude 

normalized in the figure. 

As can be seen in Fig. 3, the data show that 𝑆𝑟  has excellent 

sensitivity to contingency pulse responses, while 𝑆𝑘 shows 

high sensitivity to such events. In the case of a contingency 

interference, 𝑆𝑘 increases more than threefold, suggesting 

that contingency pulses in aircraft engines significantly affect 

𝑆𝑘. Although 𝑅𝑒  has some sensitivity to accidental pulses, its 

sensitivity to incidental noise is only 18.4 % of that of 𝑆𝑘. 

Fig. 3 also shows that 𝑅𝑒 is able to balance the sensitivity of 

bearing defects with accidental pulse stability. 

 
(a) Gaussian noise  𝑆𝑘, 𝑆𝑟 , 𝑅𝑒 

 
(b) Gaussian noise + contingency pulse  𝑆𝑘 , 𝑆𝑟, 𝑅𝑒 

Fig. 3.   𝑆𝑘  ,  𝑆𝑟 ,  𝑅𝑒 sensitivity to accidental noise. 

𝐸𝑒 refers to the information entropy of the envelope signal 

𝑝𝑗, which evaluates the sparse signal more strongly than the 

information entropy. 
 

𝐸𝑒(𝑘) = − ∑ 𝑢𝑘 𝑙𝑜𝑔2(𝑢𝑘)

𝑁

𝑗=1

 (3) 

 

After normalizing  𝑅𝑒 and  𝐸𝑒, the proposed compound 

entropy  𝐶𝑒(𝑘): 
 

𝐶𝑒(𝑘) =
𝐸𝑒̃(𝑘)

𝑅𝑒̃(𝑘)
 (4) 

 

where 𝑅𝑒̃(𝑘)is the normalized 𝑅𝑒 defined as 

𝑅𝑒̃(𝑘) =
𝑅𝑒(𝑘)

∑ 𝑅𝑒(𝑖)𝑁
𝑖=1

, and 𝐸𝑒̃(𝑘) is the normalized envelope 

entropy defined as  𝐸𝑒̃(𝑘) =
𝐸𝑒(𝑘)

∑ 𝐸𝑒(𝑖)𝑁
𝑖=1

. 

Therefore, the MACE (𝑞) proposed in this paper can be 

expressed as follows: 
 

𝑞 = min
|𝐾||𝛼|

{−
1

𝐾
∑ 𝐶𝑒(𝑘)

𝐾

𝑘=1

} (5) 

 

where 𝐾 is the total number, and 𝛼 is the adjustment 

coefficient. 

Improved dung beetle algorithm (I-DBO) 

DBO is an optimization algorithm that simulates the 

behavior of the praying mantis and offers the advantages of 

a smaller number of parameters and rapid global search 

capabilities, as described in [23]. To solve the problems of 

slow convergence and susceptibility to local optima, the Lévy 

flight strategy is incorporated into the Mantis optimization 

algorithm in this paper to improve its global search 

proficiency. The Mantis position update formula is: 
 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛾 ⊕ 𝐿𝑒𝑣𝑦(𝜆) (6) 
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where 𝑥𝑖(∙) is the position function of mantis, 𝛾 is the random 

step; ⊕ is the point multiplication operation; 𝐿𝑒𝑣𝑦(𝜆)is the 

search path of the compound Lévy distribution. 

Composite entropy Jensen-Renyi divergence distance 

After optimizing the key parameters of the VMD with I-

DBO, the optimal number of parameter modes 𝑘 and the 

penalty factor α can be determined. In order to extract the 

most effective modal components as the signal input for the 

intelligent fault diagnosis algorithm, it is necessary to screen 

each mode of VMD decomposition. In this paper, the idea of 

Jensen-Renyi divergence (JRD) distance [24]. is used to 

define the composite entropy JRD distance 𝐽𝑅(𝑘). 
 

𝐽𝑅(𝑘) =
1

1 − 𝛾
{[𝑅𝑒̃(𝑘)]

𝛼
+ |𝐶𝑐(𝑘)|𝛼} (7) 

 

where 𝛾 is the parameter of the two probability distributions, 

and 𝐶𝑐(𝑘) is Pearson's correlation coefficient: 
 

𝐶𝑐(𝑘) =
∑ (𝑢𝑘(𝑖) − 𝑢𝑘̅̅ ̅)(𝑥(𝑖) − 𝑥̅)𝑛

𝑖=1

√∑ (𝑢𝑘(𝑖) − 𝑢𝑘̅̅ ̅)𝑛
𝑖=1

2 √∑ (𝑥(𝑖) − 𝑥̅)𝑁
𝑖=1

2

 
(8) 

 

𝐽(𝑘) with the role of flexibly regulating the complexity of 

the evaluation of the time series, the system is more stable 

when 𝛼 = 1 2⁄ . Order 𝐽(𝑘), namely 

𝒒 = [𝑞(1)  𝑞(2) ⋯ 𝑞(𝑙)], where 𝑞(𝑖) > 𝑞(𝑖 + 1), 

empirically, set the threshold 𝑀 = 1. 
 

∑ 𝑞(𝑖)

K

𝑖=1

> 𝑀 (9) 

 

Fig. 4  shows the algorithm flow of the signal processing 

module. 
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Fig. 4.  Schematic diagram of the variation with defects. 

B. Signal conversion method 

Gramian angular field  

 

𝑥 ,(𝑖) =
{[𝑥(𝑖) − max(𝑥)] + [𝑥(𝑖) − min(𝑥)]}

max(𝑥) − min(𝑥)
 (10) 

 

The Gramian angular field (GAF) can convert one-

dimensional waveforms into two-dimensional image 

mapping in the Cartesian coordinate system. Since it can well 

reflect the temporal characteristics of signals and has the 

advantage of fewer parameters to be adjusted and no need for 

human selection of wavelet basis, the GAF is highly 

appreciated by the academic community [25]. In the Gramian 

angular field mapping, the time series 𝑥 should be scaled, the 

scaled time series is  𝑥 ,(𝑖). 

From 𝑥 ,(𝑖) to Gramian angular field mapping, the 

amplitude of the signal to the cosine angle  𝛽, which takes the 

value range of [0, π], and the temporal relationship to the 

radius 𝑟, the specific mapping relationship is as follows: 

 

{
𝜃(𝑖) = arccos[𝑥 ,(𝑖)]，     −1 ≤ 𝑥 ,(𝑖) ≤ 1     

𝑟(𝑖) =
𝑡(𝑖)

𝑁
                                   𝑡(𝑖)ϵ𝑁            

 (11) 

 

As shown in (11), the GAF can clearly express the 

temporal relationship of the signal. After the time series of 

the signal is mapped to the polar coordinates, the time series 

can be calculated by the angle and angle difference of each 

time point, so that GAF and field (𝑮𝐒) and GAF difference 

field  (𝑮𝐃) appear. They can be expressed as follows: 

 

𝑮𝐒 = [

cos(𝛼1,1) cos(𝛼1,2) ⋯ cos(𝛼1,𝑛)

⋮             ⋮     ⋱ ⋮

cos(αn,1) cos(𝛼𝑛,2) ⋯ cos(𝛼𝑛,𝑛)

]  

 (12) 

𝑮𝐃 = [

sin(𝛽1,1) sin(𝛽1,2) ⋯ sin(𝛽1,3)

⋮             ⋮      ⋱ ⋮

sin(𝛽𝑛,1) sin(𝛽𝑛,2) ⋯ sin(𝛽𝑛,𝑛)

]  

 

where: 𝛼𝑖,𝑗 = 𝜃(𝑖) + 𝜃(𝑗),   𝛽𝑖,𝑗 = 𝜃(𝑖) − 𝜃(𝑗) 

As shown in (12), the length 𝑛 of the diagonal matrix 

𝑮𝐒and 𝑮𝐃 after GAF mapping can maintain the integrity and 

timing of the original sequence, and 𝑮𝐒ϵRn×n, 𝑮𝐃ϵRn×n. It 

can be analyzed that  𝑮𝐒and  𝑮𝐃 respond to different angles 

of the time series 𝒙, and there are both connections and 

differences between them. To ensure the integrity of learning, 

the two angular fields should be learned simultaneously to 

better extract their features. 

C. Fault diagnosis method 

Parallel fusion attention convolutional neural network  

The  𝑮𝐒 and  𝑮𝐃 obtained from the GAF conversion contain 

a large amount of information between the signal and time, 

and the two-dimensional CNN can effectively mine its deep 

relationship with good properties. The two-dimensional CNN 

builds a deep convolutional network by alternating 

multidimensional convolution, which mainly consists of 
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a convolutional layer, an activation layer, a pooling layer, 

a fully connected layer, and a Softmax classifier. The specific 

operation method can be found in [26] and is not described 

here. 

During model operation, CNN disregards the correlation 

between each channel and spatial information, which leads to 

problems such as uneven resource distribution and lower 

resolution accuracy. The attention mechanism, on the other 

hand, focuses on prominent features, helping to improve the 

model training speed and resolution accuracy. Currently 

widely used attention mechanisms include the Channel 

Attention Module (CAM) and the Spatial Attention Module 

(SAM) [27]. The CAM evaluates the importance of each 

feature map and assigns different weights depending on its 

importance. The expression for the channel attention 

mechanism in this paper is: 

 

𝑨CAM = 𝑆 [𝑊𝑑 (𝑊𝑚𝑝(𝑿CAM))] × 𝑿CAM (13) 

 

where 𝑿CAM is the input of the channel attention mechanism, 

𝑆(∙) is the Softmax function, 𝑊𝑑 is the convolution operation, 

and 𝑊𝑚𝑝 is the average pooling operation.  

Then the output 𝒁CAM of the channel attention mechanism 

can be expressed as: 

 

𝒁CAM = 𝑨CAM(𝑿CAM) ⊙CAM 𝑿CAM (14) 

 

where ⊙𝐶𝐴𝑀 is the channel multiplication operation. Its 

structure is shown in Fig. 5. 

 

Fig. 5.  Schematic diagram of the channel attention mechanism. 

The spatial attention mechanism is mainly that the input 

spatial information is transformed into another space by the 

spatial transformation module and while retaining the key 

position information, the output of each spatial information is 

weighted to distinguish the importance of the position. The 

channel attention mechanism 𝑨SAM can be expressed as 

follows: 

 

𝑨SAM = 𝑊𝑞(𝑿SAM)𝑆[δ(𝑊𝑑1(𝑿SAM)𝑊𝑑2(𝑿SAM))] (15) 
 

where 𝑿SAM is the input for the spatial attention mechanism; 

𝑆(∙)is the Softmax function; 𝑊𝑞 is the convolutional 

operation;  𝑊𝑑1 and 𝑊𝑑2 are the fully connected neural 

network layers; 𝛿(∙) is the tensor-by-element square root 

operation. The output  𝒁SAM of the same spatial attention 

mechanism can be expressed as: 
 

𝒁SAM = 𝑨SAM(𝑿SAM) ⊙𝑆𝐴𝑀 𝑿SAM (16) 
 

where ⊙𝑆𝐴𝑀 is a spatial multiplication operation. Its structure 

is shown in Fig. 6. 

U

( )GT

Localized network

 V

 Network generator
 

Fig. 6.  Schematic diagram of the spatial attention mechanism. 

Overall, CAM focuses more on the "what" and SAM 

focuses more on the "what position". Different information of 

attention can train different deep models. 

3. THE MACE + PFACNN FAULT DIAGNOSIS METHOD 

Based on the above analysis, this paper proposes a fault 

diagnosis model of CNN based on the minimum average 

compound entropy and the parallel fusion attention 

mechanism CNN. The model consists of a signal processing 

module, a signal conversion module and a fault diagnosis 

classification module. In the signal processing module, the 

𝐶𝑒(𝑘), which is composed of the envelope entropy and 

Rayleigh entropy, is used as the fitness function for VMD 

parameter optimization to optimize the key parameters of the 

VMD. In the signal transformation module, the GAF, which 

can better reflect the signal time domain correlation, is used 

to transform one-dimensional time domain signals into two-

dimensional image features. A PFACNN is proposed for the 

fault diagnosis classification module. The framework utilizes 

the parallel CNN algorithm and develops the channel 

attention mechanism and spatial attention mechanism in the 

parallel CNN to extract the image model more completely. 

The model structure is shown in Fig. 7: 
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Fig. 7.  MACE + PFACNN model structure diagram. 
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4. VERIFICATION OF EXPERIMENTAL DATA 

A. MACE-VMD signal processing 

The bearing fault signal data from Case Western Reserve 

University (CWRU) has become the standard experimental 

data to verify the bearing fault extraction algorithm [28]. The 

data signal was obtained from the vibration signal at the 

driving end of the experimental system with a sampling 

frequency of 12000 Hz. In this test, discharge processing 

technology is used to determine the single point damage of 

the rolling bearing. The bearing model is 6205-2RS JEM SKF 

ball bearing, and the structural parameters are shown in 

Table 1. Fig. 8 shows the time domain waveform of the outer 

ring fault. The MACE is used as the fitness function of the 

improved Mantis algorithm and Fig. 9 shows the fitness 

function change curve. The amplitude is normalized. 

Table 1.  Experimental parameters. 

Inner 

diameter 

[mm] 

Pitch 

diameter 

[mm] 

Thickness 

 

[mm] 

Outer 

diameter 

[mm] 

Rolling 

diameter 

[mm] 

Contact 

angle 

[°] 

25 39 15 52 8 0 
 

 

Fig. 8.  Time domain waveform of outer ring signal. 

 

Fig. 9.  Fitness function. 

As can be seen in Fig. 8, the fault signal contains a lot of 

noise and it is difficult to recognize the fault information. As 

can be seen in Fig. 9,  𝐶𝑒 gradually decreases with increasing 

iteration, and the optimization results of the two algorithms 

are basically the same. However, I-DBO can reach the 

minimum value at the 5th iteration, while the dung beetle 

algorithm needs to reach the minimum value of the fitness 

function at the 10th iteration. The faster convergence rate can 

significantly reduce the model training time and improve the 

efficiency. The best optimized parameter of the improved 

Mantis optimization algorithm is [𝛼  𝑘] = [1360  8]. The 

VMD is decomposed into 8 modal components according to 

the best optimized parameters. Fig. 8 shows  𝐶𝑐̃ , 𝑅𝑒̃ and  𝐽𝑒. 

 

Fig. 10.  Entropy change curve. 

As can be seen in Fig. 10, 𝑅𝑒 and 𝐶𝑐 of the individual 

modal components do not exhibit identical variation trends. 

In IMF1, for example, 𝑅𝑒 is very high, but 𝐶𝑐 is relatively 

small. Therefore, it is not comprehensive to evaluate the 

effective mode based on 𝑅𝑒 or 𝐶𝑐 alone. For this reason, the 

evaluation index of the composite JRD distance is established 

in this paper. As can be seen in Fig. 10, for the composite 

entropy evaluation index is for IMF2 and IMF4, so IMF2 and 

IMF4 are selected as the effective IMF component, and the 

signal reconstruction. The amplitude is normalized. 

 
(a) Frequency domain analysis results 

 
(b) Time domain analysis results 

Fig. 11.  Analysis results after MACE-VMD. 

As can be seen in Fig. 11(a), the reconstructed signal can 

clearly show the fault frequency information of the fourth 

order bearing inner ring. The repeated impact phenomenon 

shown in Fig. 11(b) is also clearer than Fig. 8. Fig. 11 proves 

the effectiveness of the proposed signal feature extraction 

method. 

B. Experimental data verification of multiple fault 

classification  

To verify the classification accuracy of the proposed fault 

diagnosis model, inner ring, outer ring, and rolling element 

faults with a size of 0.18 mm, 0.36 mm and 0.54 mm were 

selected, along with a set of normal bearing faults, totaling 10 
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datasets. The data sample length is 2048, with 100 data points 

selected for training for each set. The training set randomly 

selects 70 sets, while the test set randomly selects 30 sets. The 

types of datasets and the selection of training and test sets are 

shown in Table 2. The diagnostic results of the model are 

shown in Table 3. 

Table 2.  Dataset classification. 

Fault 

location 
Failure 

diameter 

[mm] 

Tag Dataset 

 Training set Test set 

Regular 0 1 70 30 

Inner ring 

0.18 2 70 30 

0.36 3 70 30 

0.54 4 70 30 

Outer ring 

0.18 5 70 30 

0.36 6 70 30 

0.54 7 70 30 

Rolling body  

0.18 8 70 30 

0.36 9 70 30 

0.54 10 70 30 

Table 3.  Fault diagnosis results. 

 

As shown in Table 3, MACE + PFACNN accuracy for the 

10 categories in the CRWC dataset, 9 categories achieved 

100 % accuracy, recall and F1 score, and only category 8 was 

misclassified. The fault accuracy of the MACE + PFACNN 

model is 99.3 %. The high accuracy classification of multi-

category fault signals shows the good classification 

performance of this algorithm.  

C. Ablation experiments  

To test the influence of the signal processing module, the 

signal transformation module and the fault diagnosis module 

on model feature classification extraction, the model was 

ablated by deleting or replacing modules. The classification 

results of the different module combinations are shown in 

Table 4: 

Table 4.  Results of ablation experiment. 

Module Model Accuracy 

[%] 1 2 3 

× × √ A 91.2 

× √ √ B 93.7 

√ × √ C 97.4 

√ √ × D 95.3 

√ √ √ E 98.9 

As can be seen in Table 4, the signal feature extraction 

module has the largest impact on the overall diagnostic 

accuracy in the ablation experiments. Using the same CNN 

diagnostic module, the Gramian angular field transformation 

can improve the diagnostic accuracy by 2.5 %, while using 

the signal feature extraction module can increase the 

diagnostic accuracy by 5.2 %. The combination of the signal 

feature extraction module and the fault diagnosis module 

outperforms the other module combinations. The experiments 

show the advantages of the proposed fault signal feature 

extraction module and the rationality of the proposed model. 

D. Experimental data analysis of model noise resistance 

To demonstrate the advantages of this algorithm, we will 

use the same dataset to analyze the noise resistance 

performance of popular algorithms from recent years. The 

comparative experiments are mainly divided into two 

categories: one is a combination of one-dimensional signal 

processing module + CNN, and the other is a combination of 

two-dimensional signals + CNN. 

The one-dimensional signal processing module + CNN 

uses ensemble empirical mode decomposition (EEMD) to 

preprocess the signal and takes the classical correlation 

coefficient as the basis for extracting the effective modal 

components. The modal components with the highest 

correlation coefficient are selected as input features of the 

CNN. Three network modules, including CNN, CNN support 

vector machine (CNNSVM), and CNNBiGRU [29]-[31], 

were selected. 

Two-dimensional signal + CNN selects three types of 

models with higher accuracy for comparative verification: 

grayscale image + CNN, continuous wavelet 

transform + CNN, and Gramian angular field feature 

parameters + parallel CNN. Fig. 12 shows the experimental 

results of the proposed algorithm and the comparison 

algorithms. Table 5 shows the accuracy, recall rate, and F1 

results of the five methods under 0 dB working conditions. 

All data is the average value after 50 Monte Carlo 

experiments. 

 

Fig. 12.  Analysis results of noise resistance. 

Table 5.  Results of 0 dB white noise comparison test. 

Model MACE + 

PFACNN 

IF+ 

CNN 

M+ 

CNN 

E+ 

CNN 

E+ 

CNNSVM 

Accuracy [%] 89.2 64.5 51.6 67.8 72.4 

Recall rate [%] 89.8 64.9 52.1 68.2 72.9 

F1 [%] 89.7 64.6 51.8 67.7 72.6 

Category Accuracy [%] Category Accuracy [%] 

1 100 6 100 

2 100 7 100 

3 100 8 99.3 

4 100 9 99.3 

5 100 10 100 
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As can be seen in Fig. 12, the IF + CNN method with 

missing signal processing module, M + CNN and G + DCNN 

bearing fault diagnosis model can maintain good fault 

diagnosis accuracy under high signal-to-noise ratio 

conditions, but the low noise threshold accuracy and the fault 

diagnosis accuracy decreases rapidly below 3 dB. Improving 

the model diagnosis module can improve the base stage 

diagnosis accuracy, but cannot improve the fault diagnosis 

credibility threshold. The fault diagnosis model with the fault 

signal feature parameter extraction module can improve the 

confidence threshold of the diagnosis model, but the overall 

fault diagnosis accuracy is low due to the difference between 

one-dimensional and two-dimensional signals and the lack of 

fusion attention mechanism in neural network resolution. The 

proposed algorithm adds the fault signal feature extraction 

module based on the minimum average fusion entropy and 

the CNN fault diagnosis module of the parallel fusion 

attention mechanism, so that it has better diagnostic 

confidence threshold and diagnostic accuracy. As shown in 

Table 5, under the condition of 0 dB, MACE + PFACNN has 

the highest accuracy, precision and F1. The fault diagnosis 

model equipped with a signal processing module has much 

higher accuracy than the Missing model. 

To further study the diagnostic accuracy of the complex 

noise model, a random periodic occasional pulse signal and 

white noise are added to the original signal to test the 

diagnostic accuracy of the algorithm and the comparison 

algorithm. The results are shown in Fig. 13. Table 6 shows 

the accuracy, recall rate, and F1 results of the five methods 

under 5 dB working conditions. All data is the average value 

after 50 Monte Carlo experiments. 

 

Fig. 13.  Analysis results of the ability to resist complex noises. 

As can be seen in Fig. 13, the diagnostic accuracy of all 

algorithms decreases after the addition of sporadic impact 

noise. The two types of algorithms that replaced the signal 

feature extraction module are less robust to sporadic impact 

noise and fail to accurately extract the signal's characteristic 

components. Both the diagnostic accuracy threshold and the 

overall accuracy have decreased significantly. In contrast, the 

three algorithms using the minimum average fusion entropy 

signal feature extraction module proposed in this paper show 

a more stable decrease. The MACE + PFACNN model is 

over 15 % higher than the comparison model. It can also be 

observed that the model accuracy of the missing signal 

transformation module is higher than that of the missing fault 

diagnosis module. 

Table 6.  Experimental results of 5 dB complex noise comparison. 

Model MACE + 

PFACNN 

RVMD+ 

DCNN 

RVMD+ 

CNN 

E+CNN-

BiGRU 

E+CNN-

SVM 

Accuracy [%] 91.3 80.1 52.1 54.2 48.3 

Recall rate [%] 91.6 80.5 52.7 54.9 48.8 

F1 [%] 91.4 80.3 52.5 54.6 48.6 

 

As shown in Table 6, under the condition of 5 dB complex 

noise, the fault accuracy, recall rate and F1 of the 

MACE + PFACNN algorithm are much higher than those of 

the comparison algorithm. Table 6 demonstrates the great 

advantages of the algorithm in this paper under the condition 

of complex noise. 

E. Experimental data analysis of the model generalization 

ability  

In actual production, it is unavoidable that bearings operate 

under variable load conditions. To verify the generalization 

ability of this model under variable load conditions, this paper 

uses bearing data from Xichang University for validation, 

selecting three bearing types with capacities ranging from 1 

to 3 HP. Both the model in this paper and the comparison 

model perform 50 Monte Carlo simulations, taking the 

average of the training results. The analysis results of the 

model in this paper are shown in Fig. 14, and the 

experimental results are shown in Table 7. 

 

Fig. 14.  Analysis results of the generalization ability. 

Table 7.  Generalization experiment results – Accuracy [%]. 

Model MACE + 

PFACNN 

E+ 

CNN 

E+ 

SVM 

IF+ 

CNN 

M+ 

DCNN 

      

Ⅰ-Ⅱ 95.8 86.5 88.7 92.1 93.4 

Ⅱ-Ⅰ 96.0 88.7 89.3 90.1 93.5 

Ⅰ-Ⅲ 94.9 89.9 89.6 91.1 94.3 

Ⅲ-Ⅰ 95.6 88.9 90.1 92.6 94.2 

Ⅱ-Ⅲ 96.6 90.1 89.4 91.4 94.9 

Ⅲ-Ⅱ 94.8 90.0 91.1 92.1 94.3 

Mean 95.6 89.0 89.7 91.5 94.1 
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In Fig. 14, I-Ⅱ indicates that the model was trained with I 

as the source domain and tested for its generalization ability 

with II as the target domain. Table 7 shows the accuracy [%] 

of each method. As can be seen in Fig. 14 and Table 7, the 

average accuracy of E + CNN and E + SVM is below 90 %. 

The average accuracy of IF + CNN and M + DCNN is 

slightly higher than that of the former two. The proposed 

MACE + PFACNN model has an accuracy of 95.67 %, 

which is 1.53 % higher than the highest M + DCNN model 

among the comparison algorithms. Fig. 14 and Table 7 show 

that the MACE + PFACNN model has good generalization 

ability. 

5. BENCH TEST VERIFICATION 

A. Experimental verification of fault classification bench 

The test equipment consists of the SpectraQuest rotating 

mechanical fault test bench, dynamic acceleration sensors 

from the Yangzhou Branch, and Bentley displacement 

sensors in conjunction with the LMS data acquisition 

equipment. The experimental speed is set to 2700 rpm, and 

MBER-12 K is used as the fault bearing model. Composite 

faults, which include ball, inner ring, and outer ring faults, are 

detected. The speed is kept constant at 2700 rpm and the LMS 

SCADAS mobile data acquisition system is used to acquire 

the vibration signals from the acceleration sensor at 

a sampling frequency of 12.8 kHz. Fig. 15 shows the layout 

of the experiment. Various faults are simulated in this 

experiment, including roller faults, inner ring faults, outer 

ring faults, and their combinations. Table 8 is the 

classification table of the data set. Fig. 16 is the confusion 

diagram and classification visualization diagram of 

MACE+PFACNN fault diagnosis. 

 

1 642 5 8

9 10

3 7

 

Fig. 15.  Experimental layout. 

1. Motor, 2. Coupling, 3. Acceleration sensor, 4. Bearing housing I, 

5. Spindle, 6. Rotor, 7. Acceleration sensor, 8. Bearing housing II, 
9. Bearing I, 10. Bearing II. 

 

As can be seen in Fig. 16 and Fig. 17, the 

MACE + PFACNN algorithm showed high classification 

accuracy and its classification accuracy for the five categories 

reached 100 %. More importantly, the classification accuracy 

is still 100 %. 

Table 8.  Dataset classification. 

Fault 

location 

Failure 

diameter 

[mm] 

Tag Dataset  

 Training set Test set 

Regular —— 1 70 30 

Inner ring —— 2 70 30 

Outer ring 
90° 3A 70 30 

135° 3B 70 30 

Regular —— 4 70 30 

Compound failure 
outer 90° 5A 70 30 

outer 135° 5B 70 30 

 

Fig. 16.  Fault diagnosis results. 

 

Fig. 17.  Visualization results after diagnosis. 

B. Generalization ability bench test verification  

To further investigate the generalization ability of the 

bench test model, we obtained two single-fault test datasets 

with generalized abilities by changing the fault location in the 

outer ring: Dataset 3A and Dataset 3B, and two composite-

fault test datasets with generalized abilities: Dataset 5A and 

Dataset 5B. Both our method and the comparison method 

used Monte Carlo simulations for 50 trials, and the average 

of the training results was taken as the final result. Fig. 18 

shows four sets of generalized ability test data, with one 

operating condition as the source domain and another as the 

target domain. Specifically, Dataset 3A-3B indicates that 

Dataset 3A is the source data and Dataset 3B is the target data, 

with other numbered datasets following similar conventions. 

The generalization ability test results are shown in Table 9. 

Table 9 shows the accuracy [%] of each method. 



MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 4, 178-189 

187 

 

Fig. 18.  Analysis results of generalization ability. 

Table 9.  Generalization experiment results – Accuracy [%]. 

Model MACE + 

PFACNN 

E+ 

CNN 

E+ 

SVM 

IF+ 

CNN 

M+ 

DCNN 

      

3A-3B 97.98 91.14 91.12 89.99 90.11 

3B-3A 93.64 92.13 88.96 90.96 89.11 

5A-5B 93.87 90.11 89.13 86.57 90.40 

5B-5A 92.01 89.41 90.11 88.76 89.13 

Mean 94.37 90.69 89.83 89.07 89.68 

 

As shown in Fig. 18 and Table 9, the average classification 

accuracy of the four comparison models is about 90 %, while 

the accuracy of the model proposed in this paper is 94.37 %, 

which is 3.68 % higher than that of the best-performing 

E + CNN model among the comparison algorithms. 

Moreover, the classification accuracy of single faults in this 

model is higher than that of composite faults. Fig. 18 and 

Table 9 show that the model proposed in this paper has good 

generalization abilities. 

6. CONCLUSION AND PROSPECTS 

A. Conclusion  

Given the low classification accuracy, low noise 

resistance, and weak generalization of intelligent diagnostic 

models for rotating machinery bearings, this paper focuses on 

the comprehensive optimization of the fault diagnosis 

models. The paper proposes an innovative fault signal feature 

extraction module based on MACE. This algorithm uses 

minimum composite entropy as a fitness function for the 

VMD key parameter optimization algorithm, which improves 

the quality of fault data. A novel PFACNN is also presented, 

which improves the accuracy of fault diagnosis. The main 

conclusions of this paper are: 

Experimental data and bench tests show that the proposed 

MACE + PFACNN bearing fault diagnosis model achieves 

excellent classification accuracy with rates of 99.3 % and 

100 %, respectively. 

The fault signal processing improvement module based on 

MACE possesses high fault sensitivity and robustness to 

complex noise and effectively extracts fault signal features. It 

has a significant impact on the classification accuracy of the 

entire model. 

Compared with the comparison model, the 

MACE + PFACNN bearing fault diagnosis model exhibits 

superior noise resistance, especially in the presence of 

composite noise, with resistance much higher than that of the 

comparison model. 

In addition, the MACE + PFACNN bearing fault diagnosis 

model shows robust generalization ability under variable load 

conditions and variable fault locations. The classification 

accuracy for these two conditions is 1.53 % and 3.68 % 

higher than that of the best-performing comparison model, 

respectively. 

B. Prospects  

The discussion of the generalization ability of the fault 

diagnosis model proposed in this paper refers only to the 

generalization ability of faults in different positions. The 

generalization ability at variable speed has not yet been 

investigated. Further research on the generalization ability of 

the fault diagnosis model for variable speed will be 

conducted. It should be a good method to convert the variable 

speed problem into the constant speed problem by using 

appropriate signal processing methods, e.g., tacholess order 

tracking (TLOT). 

The fault diagnosis model proposed in this paper has good 

accuracy only for fault classification, but it has not addressed 

the solution of bearing fault degree. Further research on the 

fault diagnosis model will be conducted in the future to 

evaluate the fault degree. 
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