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Abstract: This work addresses the issues of low diagnostic accuracy and weak generalization in rotating machinery bearing fault diagnosis,
especially under complex noise conditions. In this paper, a novel bearing fault diagnosis method is proposed. This method, known as
MACE + PFACNN, combines the minimum average composite entropy (MACE) with a parallel fusion attention convolutional neural
network (PFACNN). In MACE, the minimum average composite entropy, which is composed of the Renyi entropy and the sample entropy,
is used as a fitness function to guide the dung beetle optimization algorithm for fault feature extraction. Then, the extracted signal features
are converted into angle and field and angular difference fields by Gramian angle field transformation. Finally, a PFACNN is used for fault
diagnosis. Experimental data and bench tests show that the proposed model achieves a classification accuracy of 99.93 %. Compared with
the baseline model, the noise resistance under complex noise conditions has improved by more than 15 %, and the generalization ability has

increased by 3.68 %.
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1. INTRODUCTION

Bearings are the "joints" of rotating machinery, which
often have to operate under extreme conditions such as high
temperatures, high pressure, high speed, high intensity, and
variable loads. Failure of these components can severely
compromise the safety of the equipment during operation.
Therefore, the study of bearing fault diagnosis technology is
crucial to minimize economic and life losses [1], [2].

Current bearing fault diagnosis technologies can be mainly
categorized into two types: methods based on signal
processing and those based on artificial intelligence.
Currently, scientific researchers often study one type of fault
diagnosis method in isolation. However, it is important to
recognize that these two approaches are not independent but
rather form a unified whole. It is a challenge to effectively
improve the accuracy of fault diagnosis by focusing on only
one type of method. For example, artificial intelligence (Al)
techniques can help with the parameter optimization of fault
diagnosis methods and the classification of faults within
signal processing. Conversely, signal processing methods can
improve the data quality of Al techniques and thus increase
the accuracy and generalization capability of Al-based fault
diagnosis methods.
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The fault signal feature extraction method represented by
variational mode decomposition (VMD) can effectively solve
the modal aliasing phenomenon in empirical mode
decomposition (EMD) and has attracted the attention of most
researchers. However, in VMD, the penalty parameters o and
the decomposition layer k need to be specified in advance,
which leads to human factors affecting the decomposition and
extraction effect of VMD [3]. The use of optimization
algorithms to select key parameters for VMD has become
mainstream in current scientific research. The selection of the
fitness function is crucial for the proper optimization of these
parameters. Luo selected a series of time-domain and
frequency-domain indices as the fitness function to improve
the whale optimization algorithm to achieve feature
extraction of the wind turbine gearbox fault signal [4]. Chang
extracted the fault signal features using the center frequency
and Pearson correlation coefficient of the modal function as
the fitness function of the particle swarm optimization (PSO)
algorithm.[5]. Liu extracted the features of the oil pulse fluid
pressure signal, achieving good results [6]. Entropy, which is
a measure of the uncertainty of a random variable, has
attracted interest in the optimization of VMD parameters and
the selection of effective modes. Song used the generalized
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refined composite multiscale dispersion entropy as the fitness
function for the grasshopper optimization algorithm to
achieve fault signal extraction for sliding bearings [7]. Wang
used the energy loss coefficient and information entropy as
the fitness function to optimize the key parameters of VMD
and achieved good results [8]. However, the use of single
entropy as an optimization indicator for VMD parameters and
as a method to select effective modal components has its
limitations. For example, sample entropy evaluates the
complexity of time series by quantifying the probability of
generating new patterns within the signal. Information
entropy, on the other hand, is commonly used to measure the
information content of a system. The different centroids of
the different entropies can lead to different optimization
results for the VMD parameters, resulting in significant
variations in the model's fault diagnosis capability [9], [10].

Compared to back propagation (BP), convolutional neural
network (CNN) has the advantage of detecting the deep
connections of the data, preventing overfitting and having
high diagnostic accuracy, which has attracted much attention
in the academic community [11]. Chao used a CNN to
identify the high-speed axial plunger pump cavitation
intensity, which greatly improves the identification accuracy
[12] Bao et al. used CNN to identify time-varying stress data
and effectively identified the failure damage of a pipe rack of
an offshore platform [13]. Jiang applied CNN to the fault
diagnosis of nuclear power plant bearings. Compared with
other methods, the fault diagnosis model trained with CNN
has better anti-noise and generalization ability [14]. However,
the above CNN-based fault diagnosis methods are based on
one-dimensional images and grayscale graphs. According to
research, CNN for two-dimensional image learning ability is
much higher than that for one-dimensional signals, and the
grayscale graph cannot clearly represent the relationship
between signal amplitude and time, and it is easy to ignore
the bearing fault signal in the time domain [15]. The attention
mechanism (AM) continuously updates the feature weight
according to the loss value obtained by network training, and
gives each feature the weight corresponding to the weight, so
that the training of the CNN is more effective. Han has used
AM for fault diagnosis of transmission machinery, which
improves the computational efficiency and diagnostic
accuracy of CNN and achieves good results [16]. Xiang used
AM to fault diagnose the fan fault, and the trained model can
predict the abnormal state of the fan [17]. Xu applied AM to
solve the problem of low performance of CNN in complex
working environments, and the results show that the proposed
model has good reliability in Guangdong bearing fault
diagnosis [18]. It should be noted that the focus of AM itself
is not the same, and there is obviously some deficiency in
analyzing complex time-varying non-stationary fault signals
with a single attention mechanism [19].

Based on the above analysis, an innovative feature
parameter called minimum average composite entropy
(MACE) is introduced in this paper, which can effectively
compensate for sporadic noise and fault sensitivity. Using this
parameter as a fitness function for the optimization algorithm
of the important VMD parameters improves the quality of the
input signals. In this paper, an innovative fault diagnosis
algorithm based on a parallel fusion attention convolutional

neural network (PFACNN) is proposed. By combining with
MACE, this algorithm significantly improves the accuracy
and generalization ability of the fault diagnosis model under
complex noise working conditions. The research framework
is shown in Fig. 1.
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Fig. 1. Research block diagram.
2. SUBJECT & METHODS
A. Signal processing method

Minimum average composite entropy variational mode
decomposition (MACE-VMD)

In actual production, fault-bearing signals often contain
a large amount of noise and invalid signals. If these cannot be
processed correctly, this significantly impairs the diagnostic
accuracy of intelligent diagnosis algorithms. VMD can
represent input signals as a set of modal functions, which is
widely used in signal processing. Reference is made to the
decomposition process in the literature [20]. When applying
VMD, the mode number k and the penalty factor a must be
set artificially. Improper setting of the parameters will
significantly affect the decomposition effect of the signal
[21]. As an index that can represent the characteristic
parameters of the impact signal, Kurtosis (S,) is often used to
select the key parameters of VMD, but its sensitivity to
occasional impact noise is too large, which often leads to
incorrect selection of target parameters [22]. Skewness (S,.)
is limited due to its low fault sensitivity. Therefore, this paper
innovatively proposes the Renyi Entropy (R, ), which can
better balance the periodic shock signal and the occasional
noise signal.

When the bearing fault signal x = {x(1),x(2),+:-,x(n)}
after VMD is the time series of its k order mode
U, = {u, (1), u, (2), -, u,(n)}, and R, of its k order mode
can be defined as:

(I/N)Ziq [ D

R = [ /MEE, e O

)
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where N is the total number of samples. Using the rolling
bearing inner ring fault model, investigate the sensitivity of
R., S, and S to defects and their stability to sporadic noise.
Fault model of the rolling bearing inner ring:

x(©) = Y ae 9 Ocos [woT- 20 1) @)
J

where a; denotes the amplitude of the j™ fault impact, g
denotes the attenuation coefficient of the bearing, M denotes
the number of bearing impact excitations, y(t) denotes the
pseudocycle time; 7; denotes the time delay caused by
relative sliding, and w, denotes the fault feature frequency.
Fig. 2 illustrates the variation of R,, S, and S, with the inner
ring fault defect of rolling bearings. For a better
understanding, the defect variation is converted into the
variation of the signal noise ratio (SNR).
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Fig. 2. Sk, S,, R, schematic diagram of variation with defects.

Fig. 2 shows the schematic diagram of Sy, S, and R, with
the fault defect of the rolling bearing. The defect changes
have been converted to SNR changes for better
understanding.

As can be seen in Fig. 2, S, is not sensitive to the defect
size, and R, has asimilar trend to S;. It can be seen that R,
and S, have high sensitivity to fault defect changes and can
indicate bearing faults more accurately. This phenomenon
can be similar to outer ring failure and rolling body failure
and is not described here. As shown in Fig.2, S, is
insensitive to defect size, while S, and R, exhibit similar
variation trends. This indicates that S, and R.are highly
sensitive to fault defect variation and can accurately indicate
bearing faults. This phenomenon shows similar variation
trends for outer race faults and rolling element faults, which
will not be discussed further here. Fig. 3 illustrates the
variations of S, S, and R,.

Fig. 3 shows the variation of S, S,and R, under white
noise and composite noise conditions, with the amplitude
normalized in the figure.

As can be seen in Fig. 3, the data show that S, has excellent
sensitivity to contingency pulse responses, while S, shows
high sensitivity to such events. In the case of a contingency
interference, S, increases more than threefold, suggesting
that contingency pulses in aircraft engines significantly affect
S,. Although R, has some sensitivity to accidental pulses, its
sensitivity to incidental noise is only 18.4 % of that of S,.
Fig. 3 also shows that R, is able to balance the sensitivity of
bearing defects with accidental pulse stability.
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(b) Gaussian noise + contingency pulse Si, S,, R,
Fig.3. Sk, S, R, sensitivity to accidental noise.
E, refers to the information entropy of the envelope signal

p;, which evaluates the sparse signal more strongly than the
information entropy.

N

)y log, () )

j=1

Ee(k) =

After normalizing R, and E,, the proposed compound
entropy C.(k):

E, (k)
C.(k 4
(k) = X0 (4)
where R, (k)is the normalized R, defined as
R, (k) = ,fea() —, and E_(k) is the normalized envelope

Zi:] Re(l)
H T Ee(k)
entropy defined as E, (k) = SO

Therefore, the MACE (q) proposed in this paper can be
expressed as follows:

~ Kl |{ ZC (k)} ©)

where K is the total number, and « is the adjustment
coefficient.

Improved dung beetle algorithm (I-DBO)

DBO is an optimization algorithm that simulates the
behavior of the praying mantis and offers the advantages of
a smaller number of parameters and rapid global search
capabilities, as described in [23]. To solve the problems of
slow convergence and susceptibility to local optima, the Lévy
flight strategy is incorporated into the Mantis optimization
algorithm in this paper to improve its global search
proficiency. The Mantis position update formula is:

x(t+1) =x(0) +y @ Levy(D) (6)
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where x; (+) is the position function of mantis, y is the random
step; @ is the point multiplication operation; Levy(4)is the
search path of the compound Lévy distribution.

Composite entropy Jensen-Renyi divergence distance

After optimizing the key parameters of the VMD with |-
DBO, the optimal number of parameter modes k and the
penalty factor o can be determined. In order to extract the
most effective modal components as the signal input for the
intelligent fault diagnosis algorithm, it is necessary to screen
each mode of VMD decomposition. In this paper, the idea of
Jensen-Renyi divergence (JRD) distance [24]. is used to
define the composite entropy JRD distance J (k).

Jr(k) = %{[E(k)]“ +1C.(k)1*} 7
1—y

where y is the parameter of the two probability distributions,
and C.(k) is Pearson's correlation coefficient:

i=1 (e (D) — W) (x (D) — %)

Cc(k) =
(@ T B 60 - 2

(8)

J (k) with the role of flexibly regulating the complexity of
the evaluation of the time series, the system is more stable
when a=1/2. Order J(k), namely
q=[q(1) q(2) - qD], where q()) >q(i+1),
empirically, set the threshold M = 1.
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Fig. 4. Schematic diagram of the variation with defects.

B. Signal conversion method

Gramian angular field

_ {x@) — max()] + [x(@) — minC)]}

max(x) — min(x)

x (i) (10)

The Gramian angular field (GAF) can convert one-
dimensional waveforms into two-dimensional image
mapping in the Cartesian coordinate system. Since it can well
reflect the temporal characteristics of signals and has the
advantage of fewer parameters to be adjusted and no need for
human selection of wavelet basis, the GAF is highly
appreciated by the academic community [25]. In the Gramian
angular field mapping, the time series x should be scaled, the
scaled time series is x’(i).

From x’(i) to Gramian angular field mapping, the
amplitude of the signal to the cosine angle g, which takes the
value range of [0, ], and the temporal relationship to the
radius r, the specific mapping relationship is as follows:

6(i) = arccos[x'(i)], -1<x(@)<1
[ 11
r(i) = % t(i)eN (D

As shown in (11), the GAF can clearly express the
temporal relationship of the signal. After the time series of
the signal is mapped to the polar coordinates, the time series
can be calculated by the angle and angle difference of each
time point, so that GAF and field (G5) and GAF difference
field (GP) appear. They can be expressed as follows:

cos(al‘l) cos(al_z) . cos(al_n)-
GS = : : . :
cos(ocn_l) cos(an_z) . COS((Xn_n)_
@
sin(ﬁljl) sin(ﬁl’z) . sin(ﬂm)
G° = : : :
sin(ﬁnjl) sin(ﬁnjz) . sin(ﬂn’n)_

where: a; ; = 0(0) + 6(), B =00 —6(@)

As shown in (12), the length n of the diagonal matrix
GSand GP after GAF mapping can maintain the integrity and
timing of the original sequence, and GSeR™™, GPeR™ ", It
can be analyzed that GSand GP respond to different angles
of the time series x, and there are both connections and
differences between them. To ensure the integrity of learning,
the two angular fields should be learned simultaneously to
better extract their features.

C. Fault diagnosis method

Parallel fusion attention convolutional neural network

The GSand GP obtained from the GAF conversion contain
a large amount of information between the signal and time,
and the two-dimensional CNN can effectively mine its deep
relationship with good properties. The two-dimensional CNN
builds a deep convolutional network by alternating
multidimensional convolution, which mainly consists of
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a convolutional layer, an activation layer, a pooling layer,
a fully connected layer, and a Softmax classifier. The specific
operation method can be found in [26] and is not described
here.

During model operation, CNN disregards the correlation
between each channel and spatial information, which leads to
problems such as uneven resource distribution and lower
resolution accuracy. The attention mechanism, on the other
hand, focuses on prominent features, helping to improve the
model training speed and resolution accuracy. Currently
widely used attention mechanisms include the Channel
Attention Module (CAM) and the Spatial Attention Module
(SAM) [27]. The CAM evaluates the importance of each
feature map and assigns different weights depending on its
importance. The expression for the channel attention
mechanism in this paper is:

ACAM — ¢ [Wd (me(XCAM))] % XCAM (13)

where X“AM js the input of the channel attention mechanism,
S(-) is the Softmax function, W is the convolution operation,
and W,,,,, is the average pooling operation.
Then the output Z¢4M of the channel attention mechanism
can be expressed as:
ZCAM — ACAM(XCAM) QCAM XCAM (14)

where O%M s the channel multiplication operation. Its
structure is shown in Fig. 5.
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Fig. 5. Schematic diagram of the channel attention mechanism.

The spatial attention mechanism is mainly that the input
spatial information is transformed into another space by the
spatial transformation module and while retaining the key
position information, the output of each spatial information is
weighted to distinguish the importance of the position. The
channel attention mechanism ASAM can be expressed as
follows:

Signal processing method  Conversion method
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Convolutional

=
I —

ASAM — m(XSAM)S[S(Wdl (XSAM)WdZ(XSAM))] (15)
where X5AM s the input for the spatial attention mechanism;
S(is the Softmax function; W, is the convolutional
operation; W,, and W, are the fully connected neural
network layers; &(-) is the tensor-by-element square root
operation. The output ZSAM of the same spatial attention
mechanism can be expressed as:

ZSAM — ASAM (XSAM) OSAM XSAM (16)
where ©O54M is a spatial multiplication operation. Its structure
is shown in Fig. 6.
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Fig. 6. Schematic diagram of the spatial attention mechanism.

Overall, CAM focuses more on the "what" and SAM
focuses more on the "what position". Different information of
attention can train different deep models.

3. THE MACE + PFACNN FAULT DIAGNOSIS METHOD

Based on the above analysis, this paper proposes a fault
diagnosis model of CNN based on the minimum average
compound entropy and the parallel fusion attention
mechanism CNN. The model consists of a signal processing
module, a signal conversion module and a fault diagnosis
classification module. In the signal processing module, the
C.(k), which is composed of the envelope entropy and
Rayleigh entropy, is used as the fitness function for VMD
parameter optimization to optimize the key parameters of the
VMD. In the signal transformation module, the GAF, which
can better reflect the signal time domain correlation, is used
to transform one-dimensional time domain signals into two-
dimensional image features. A PFACNN is proposed for the
fault diagnosis classification module. The framework utilizes
the parallel CNN algorithm and develops the channel
attention mechanism and spatial attention mechanism in the
parallel CNN to extract the image model more completely.
The model structure is shown in Fig. 7:

Fault diagnosis method
|

Out
put

Fig. 7. MACE + PFACNN model structure diagram.
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4. VERIFICATION OF EXPERIMENTAL DATA

A. MACE-VMD signal processing

The bearing fault signal data from Case Western Reserve
University (CWRU) has become the standard experimental
data to verify the bearing fault extraction algorithm [28]. The
data signal was obtained from the vibration signal at the
driving end of the experimental system with a sampling
frequency of 12000 Hz. In this test, discharge processing
technology is used to determine the single point damage of
the rolling bearing. The bearing model is 6205-2RS JEM SKF
ball bearing, and the structural parameters are shown in
Table 1. Fig. 8 shows the time domain waveform of the outer
ring fault. The MACE is used as the fitness function of the
improved Mantis algorithm and Fig. 9 shows the fitness
function change curve. The amplitude is normalized.

Table 1. Experimental parameters.

Inner Pitch Thickness Outer Rolling  Contact
diameter diameter diameter diameter angle
[mm] [mm] [mm] [mm] [mm] [°]
25 39 15 52 8 0
— 0.2 r J J
g
[
T
2
s
£
< 1 1 1
0 0.25 0.5 0.75 0.1
t[s]

Fig. 8. Time domain waveform of outer ring signal.
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Fig. 9. Fitness function.

As can be seen in Fig. 8, the fault signal contains a lot of
noise and it is difficult to recognize the fault information. As
can be seen in Fig. 9, C, gradually decreases with increasing
iteration, and the optimization results of the two algorithms
are basically the same. However, I-DBO can reach the
minimum value at the 5" iteration, while the dung beetle
algorithm needs to reach the minimum value of the fitness
function at the 10" iteration. The faster convergence rate can
significantly reduce the model training time and improve the
efficiency. The best optimized parameter of the improved
Mantis optimization algorithm is[a k] = [1360 8]. The
VMD is decomposed into 8 modal components according to
the best optimized parameters. Fig. 8 shows C, , R, and J,.
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As can be seen in Fig. 10, R, and C. of the individual
modal components do not exhibit identical variation trends.
In IMF1, for example, R, is very high, but C, is relatively
small. Therefore, it is not comprehensive to evaluate the
effective mode based on R, or C, alone. For this reason, the
evaluation index of the composite JRD distance is established
in this paper. As can be seen in Fig. 10, for the composite
entropy evaluation index is for IMF2 and IMF4, so IMF2 and
IMF4 are selected as the effective IMF component, and the
signal reconstruction. The amplitude is normalized.
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Fig. 11. Analysis results after MACE-VMD.

0 0.04

As can be seen in Fig. 11(a), the reconstructed signal can
clearly show the fault frequency information of the fourth
order bearing inner ring. The repeated impact phenomenon
shown in Fig. 11(b) is also clearer than Fig. 8. Fig. 11 proves
the effectiveness of the proposed signal feature extraction
method.

B. Experimental data verification of multiple fault
classification

To verify the classification accuracy of the proposed fault
diagnosis model, inner ring, outer ring, and rolling element
faults with a size of 0.18 mm, 0.36 mm and 0.54 mm were
selected, along with a set of normal bearing faults, totaling 10
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datasets. The data sample length is 2048, with 100 data points
selected for training for each set. The training set randomly
selects 70 sets, while the test set randomly selects 30 sets. The
types of datasets and the selection of training and test sets are
shown in Table 2. The diagnostic results of the model are
shown in Table 3.

Table 2. Dataset classification.

Fault Failure Tag Dataset
location diameter Training set  Test set
[mm]
Regular 0 1 70 30
0.18 2 170 30
Inner ring 0.36 3 70 30
0.54 4 70 30
0.18 5 70 30
Outer ring 0.36 6 70 30
0.54 7 710 30
0.18 8 70 30
Rolling body 0.36 9 70 30
0.54 10 70 30
Table 3. Fault diagnosis results.
Category  Accuracy [%] Category  Accuracy [%]
1 100 6 100
2 100 7 100
3 100 8 99.3
4 100 9 99.3
5 100 10 100

As shown in Table 3, MACE + PFACNN accuracy for the
10 categories in the CRWC dataset, 9 categories achieved
100 % accuracy, recall and F1 score, and only category 8 was
misclassified. The fault accuracy of the MACE + PFACNN
model is 99.3 %. The high accuracy classification of multi-
category fault signals shows the good classification
performance of this algorithm.

C. Ablation experiments

To test the influence of the signal processing module, the
signal transformation module and the fault diagnosis module
on model feature classification extraction, the model was
ablated by deleting or replacing modules. The classification
results of the different module combinations are shown in
Table 4:

Table 4. Results of ablation experiment.

Module Model Accuracy
1 2 3 [%]
>< x N A 91.2
x v y B 937
y x y c 97.4
Y d x D 95.3
Y v Y E 98.9

As can be seen in Table 4, the signal feature extraction
module has the largest impact on the overall diagnostic
accuracy in the ablation experiments. Using the same CNN
diagnostic module, the Gramian angular field transformation
can improve the diagnostic accuracy by 2.5 %, while using
the signal feature extraction module can increase the
diagnostic accuracy by 5.2 %. The combination of the signal
feature extraction module and the fault diagnosis module
outperforms the other module combinations. The experiments
show the advantages of the proposed fault signal feature
extraction module and the rationality of the proposed model.

D. Experimental data analysis of model noise resistance

To demonstrate the advantages of this algorithm, we will
use the same dataset to analyze the noise resistance
performance of popular algorithms from recent years. The
comparative experiments are mainly divided into two
categories: one is a combination of one-dimensional signal
processing module + CNN, and the other is a combination of
two-dimensional signals + CNN.

The one-dimensional signal processing module + CNN
uses ensemble empirical mode decomposition (EEMD) to
preprocess the signal and takes the classical correlation
coefficient as the basis for extracting the effective modal
components. The modal components with the highest
correlation coefficient are selected as input features of the
CNN. Three network modules, including CNN, CNN support
vector machine (CNNSVM), and CNNBIGRU [29]-[31],
were selected.

Two-dimensional signal + CNN selects three types of
models with higher accuracy for comparative verification:
grayscale image + CNN, continuous wavelet
transform + CNN, and Gramian angular field feature
parameters + parallel CNN. Fig. 12 shows the experimental
results of the proposed algorithm and the comparison
algorithms. Table 5 shows the accuracy, recall rate, and F1
results of the five methods under 0 dB working conditions.
All data is the average value after 50 Monte Carlo
experiments.

100+
3
>
O
E
3 50 E e
Q@  |~MACE + PFACNN ~ E+CNN s
< L. IF+CNN ~E+CNNBIiGRU e
M+CNN E+CNNSVM
o CLG¥DCNN ‘
10 5 0 -5 -10
SNR [dB]

Fig. 12. Analysis results of noise resistance.

Table 5. Results of 0 dB white noise comparison test.

Model MACE + IF+ M+ E+ E+
PFACNN CNN CNN CNN CNNSVM

Accuracy [%] 89.2 645 516 678 724

Recall rate [%] 89.8 64.9 521 682 729

F1 [%] 89.7 646 518 67.7 726
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As can be seen in Fig. 12, the IF + CNN method with
missing signal processing module, M + CNN and G + DCNN
bearing fault diagnosis model can maintain good fault
diagnosis accuracy under high signal-to-noise ratio
conditions, but the low noise threshold accuracy and the fault
diagnosis accuracy decreases rapidly below 3 dB. Improving
the model diagnosis module can improve the base stage
diagnosis accuracy, but cannot improve the fault diagnosis
credibility threshold. The fault diagnosis model with the fault
signal feature parameter extraction module can improve the
confidence threshold of the diagnosis model, but the overall
fault diagnosis accuracy is low due to the difference between
one-dimensional and two-dimensional signals and the lack of
fusion attention mechanism in neural network resolution. The
proposed algorithm adds the fault signal feature extraction
module based on the minimum average fusion entropy and
the CNN fault diagnosis module of the parallel fusion
attention mechanism, so that it has better diagnostic
confidence threshold and diagnostic accuracy. As shown in
Table 5, under the condition of 0 dB, MACE + PFACNN has
the highest accuracy, precision and F1. The fault diagnosis
model equipped with a signal processing module has much
higher accuracy than the Missing model.

To further study the diagnostic accuracy of the complex
noise model, a random periodic occasional pulse signal and
white noise are added to the original signal to test the
diagnostic accuracy of the algorithm and the comparison
algorithm. The results are shown in Fig. 13. Table 6 shows
the accuracy, recall rate, and F1 results of the five methods
under 5 dB working conditions. All data is the average value
after 50 Monte Carlo experiments.
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Fig. 13. Analysis results of the ability to resist complex noises.

As can be seen in Fig. 13, the diagnostic accuracy of all
algorithms decreases after the addition of sporadic impact
noise. The two types of algorithms that replaced the signal
feature extraction module are less robust to sporadic impact
noise and fail to accurately extract the signal's characteristic
components. Both the diagnostic accuracy threshold and the
overall accuracy have decreased significantly. In contrast, the
three algorithms using the minimum average fusion entropy
signal feature extraction module proposed in this paper show
a more stable decrease. The MACE + PFACNN model is
over 15 % higher than the comparison model. It can also be
observed that the model accuracy of the missing signal
transformation module is higher than that of the missing fault
diagnosis module.
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Table 6. Experimental results of 5 dB complex noise comparison.

Model MACE + RVMD+RVMD+ E+CNN E+CNN

PFACNN DCNN CNN BiGRU SVM
Accuracy [%] 91.3 80.1 521 54.2 48.3
Recall rate [%] 91.6 80.5 52.7 549 48.8
F1 [%] 91.4 80.3 52.5 54.6 48.6

As shown in Table 6, under the condition of 5 dB complex
noise, the fault accuracy, recall rate and F1 of the
MACE + PFACNN algorithm are much higher than those of
the comparison algorithm. Table 6 demonstrates the great
advantages of the algorithm in this paper under the condition
of complex noise.

E. Experimental data analysis of the model generalization
ability

In actual production, it is unavoidable that bearings operate
under variable load conditions. To verify the generalization
ability of this model under variable load conditions, this paper
uses bearing data from Xichang University for validation,
selecting three bearing types with capacities ranging from 1
to 3 HP. Both the model in this paper and the comparison
model perform 50 Monte Carlo simulations, taking the
average of the training results. The analysis results of the
model in this paper are shown in Fig.14, and the
experimental results are shown in Table 7.

I-m - n-1 M-l Mean
Generalization type
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Fig. 14. Analysis results of the generalization ability.

Table 7. Generalization experiment results — Accuracy [%].

Model MACE+ E+ E+ IF+ M+
PFACNN CNN SVM CNN DCNN
[ [ HEE s
I-11 95.8 86.5 88.7 92.1 934
II-1 96.0 88.7 89.3 90.1 93.5
[-111 94.9 89.9 89.6 91.1 94.3
I1-1 95.6 88.9 90.1 92.6 94.2
II-111 96.6 90.1 89.4 914 94.9
II-11 94.8 90.0 91.1 92.1 94.3
Mean 95.6 89.0 89.7 915 94.1
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In Fig. 14, I-1I indicates that the model was trained with I
as the source domain and tested for its generalization ability
with 1l as the target domain. Table 7 shows the accuracy [%]
of each method. As can be seen in Fig. 14 and Table 7, the
average accuracy of E + CNN and E + SVM is below 90 %.
The average accuracy of IF+CNN and M+ DCNN is
slightly higher than that of the former two. The proposed
MACE + PFACNN model has an accuracy of 95.67 %,
which is 1.53 % higher than the highest M + DCNN model
among the comparison algorithms. Fig. 14 and Table 7 show
that the MACE + PFACNN model has good generalization
ability.

5. BENCH TEST VERIFICATION

A. Experimental verification of fault classification bench

The test equipment consists of the SpectraQuest rotating
mechanical fault test bench, dynamic acceleration sensors
from the Yangzhou Branch, and Bentley displacement
sensors in conjunction with the LMS data acquisition
equipment. The experimental speed is set to 2700 rpm, and
MBER-12 K is used as the fault bearing model. Composite
faults, which include ball, inner ring, and outer ring faults, are
detected. The speed is kept constant at 2700 rpm and the LMS
SCADAS mobile data acquisition system is used to acquire
the vibration signals from the acceleration sensor at
a sampling frequency of 12.8 kHz. Fig. 15 shows the layout
of the experiment. Various faults are simulated in this
experiment, including roller faults, inner ring faults, outer
ring faults, and their combinations. Table8 is the

classification table of the data set. Fig. 16 is the confusion
diagram and classification visualization diagram of
MACE+PFACNN fault diagnosis.
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Fig. 15. Experimental layout.

1. Motor, 2. Coupling, 3. Acceleration sensor, 4.Bearing housing |,
5. Spindle, 6. Rotor, 7. Acceleration sensor, 8.Bearing housing II,
9. Bearing I, 10. Bearing II.

As can be seen in Fig.16 and Fig.17, the
MACE + PFACNN algorithm showed high classification
accuracy and its classification accuracy for the five categories
reached 100 %. More importantly, the classification accuracy
is still 100 %.

Table 8. Dataset classification.

Fault Failure Tag Dataset
location diameter Training set  Test set
[mm]
Regular e 1 70 30
Inner ring e 2 70 30
. 90° 3A 70 30
Outer ring .
135 3B 70 30
Regular e 4 70 30
. outer90° 5A 70 30
Compound failure .
outer 135 5B 70 30

100
100.0% 0.0% 0.0% 0.0% 0.0%
1 % e o e o
80
0.0% 100.0% 0.0% 0.0% 0.0%
2 2 e i ° o o
o
> 60
b % 100.0% % %
o 40
': 4 U g% 0 g% 0 g% 0 g%
120
N N ’ -
0

1 2 3A 4 5A
Predictive category

Fig. 16. Fault diagnosis results.
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Fig. 17. Visualization results after diagnosis.

B. Generalization ability bench test verification

To further investigate the generalization ability of the
bench test model, we obtained two single-fault test datasets
with generalized abilities by changing the fault location in the
outer ring: Dataset 3A and Dataset 3B, and two composite-
fault test datasets with generalized abilities: Dataset 5A and
Dataset 5B. Both our method and the comparison method
used Monte Carlo simulations for 50 trials, and the average
of the training results was taken as the final result. Fig. 18
shows four sets of generalized ability test data, with one
operating condition as the source domain and another as the
target domain. Specifically, Dataset 3A-3B indicates that
Dataset 3A is the source data and Dataset 3B is the target data,
with other numbered datasets following similar conventions.
The generalization ability test results are shown in Table 9.
Table 9 shows the accuracy [%] of each method.
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Fig. 18. Analysis results of generalization ability.

Table 9. Generalization experiment results — Accuracy [%)].

Model MACE+ E+ E+ IF+ M+
PFACNN CNN SVM CNN DCNN
| | EE ==

3A-3B  97.98 91.14 91.12 89.99 90.11

3B-3A  93.64 92.13  88.96 90.96 89.11

5A-5B  93.87 90.11  89.13 86.57 90.40

5B-5A 92.01 89.41 90.11 88.76 89.13

Mean  94.37 90.69  89.83 89.07 89.68

As shown in Fig. 18 and Table 9, the average classification
accuracy of the four comparison models is about 90 %, while
the accuracy of the model proposed in this paper is 94.37 %,
which is 3.68 % higher than that of the best-performing
E+CNN model among the comparison algorithms.
Moreover, the classification accuracy of single faults in this
model is higher than that of composite faults. Fig. 18 and
Table 9 show that the model proposed in this paper has good
generalization abilities.

6. CONCLUSION AND PROSPECTS

A. Conclusion

Given the low classification accuracy, low noise
resistance, and weak generalization of intelligent diagnostic
models for rotating machinery bearings, this paper focuses on
the comprehensive optimization of the fault diagnosis
models. The paper proposes an innovative fault signal feature
extraction module based on MACE. This algorithm uses
minimum composite entropy as a fitness function for the
VMD key parameter optimization algorithm, which improves
the quality of fault data. A novel PFACNN is also presented,
which improves the accuracy of fault diagnosis. The main
conclusions of this paper are:

Experimental data and bench tests show that the proposed
MACE + PFACNN bearing fault diagnosis model achieves
excellent classification accuracy with rates of 99.3 % and
100 %, respectively.

The fault signal processing improvement module based on
MACE possesses high fault sensitivity and robustness to
complex noise and effectively extracts fault signal features. It
has a significant impact on the classification accuracy of the
entire model.
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Compared with the comparison  model, the
MACE + PFACNN bearing fault diagnosis model exhibits
superior noise resistance, especially in the presence of
composite noise, with resistance much higher than that of the
comparison model.

In addition, the MACE + PFACNN bearing fault diagnosis
model shows robust generalization ability under variable load
conditions and variable fault locations. The classification
accuracy for these two conditions is 1.53 % and 3.68 %
higher than that of the best-performing comparison model,
respectively.

B. Prospects

The discussion of the generalization ability of the fault
diagnosis model proposed in this paper refers only to the
generalization ability of faults in different positions. The
generalization ability at variable speed has not yet been
investigated. Further research on the generalization ability of
the fault diagnosis model for variable speed will be
conducted. It should be a good method to convert the variable
speed problem into the constant speed problem by using
appropriate signal processing methods, e.g., tacholess order
tracking (TLOT).

The fault diagnosis model proposed in this paper has good
accuracy only for fault classification, but it has not addressed
the solution of bearing fault degree. Further research on the
fault diagnosis model will be conducted in the future to
evaluate the fault degree.
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