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Abstract: Autonomous relative positioning is a critical challenge for unmanned aerial vehicle (UAV) swarms. In this study, we address the
optimization of measurement constraint selection in the distributed relative positioning process of large-scale UAV swarms. We introduce
a distributed graph optimization (DGO) scheme for swarm relative positioning, which enables global consistent relative position estimation
through limited inter-UAV information sharing. To prevent the calculation time from escalating with swarm size, this method allows users to
specify the number of relative measurement constraints used in the calculation. Building on the Cramér-Rao Lower Bound (CRLB) and Fisher
Information Matrix (FIM) theory, we further propose a theoretically optimal method for selecting relative measurement constraints. Different
from traditional distributed optimization methods that use fixed constraints, the proposed method can adaptively select the most theoretically
advantageous constraints to improve accuracy, resulting in higher precision and improved adaptability to dynamic environments. To validate
the effectiveness of the proposed method, we conducted numerical experiments with different swarm sizes and sensing error conditions. The
results show that the proposed method has higher accuracy and stability compared to self-pose estimation methods and other measurement
selection approaches, while having a low computational load. This work represents the first attempt to incorporate the FIM into constraint
selection for distributed localization of UAV swarms.
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1. INTRODUCTION the collaborative integration of multiple sensors. The clas-
. . sical multi-sensor fusion methods for UAV swarm primarily

In recent years, unmanned aerial vehicle (UAV) swarms  ;,jyde the Extended Kalman Filter (EKF) [9] and its vari-
have taken on an increasingly important role in different ants, such as the Unscented Kalman Filter (UKF) [10] and
fields, including emergency rescue [1], smart agriculture [2],  he varjational Bayesian Extended Kalman Filter (VBEKF)
and urban traffic [3]. The advantage of using UAV swarms 111 However, filter-based methods usually require high

over single UAVs is the ability to perform tasks in a col- pcervapility between UAVs. In practice, the limited field
laborative and parallel manner, thereby improving efficiency. ¢ view (FOV) of sensors, such as cameras, poses a chal-

Relative POSltlomng_ Serves as the basm for collaboration l?e' lenge for the generalization of filtering methods to large-scale
tween UAVs. Acquiring the coordinates of other cooperative ¢ To overcome these limitations, researchers have

targets is essential for each UAV within the swarm to make 5054 optimization-based cooperative localization meth-
coordinated decisions, demonstrating the capacity for swarm  4¢ for swarms. The mainstream approach is to use UWB
intelligepce. Existing relative positioning systems fgr UAV " hodules for distance measurement, deploy cameras for rel-
swarms include GPS [4], monocular and binocular vision [S],  4jve direction measurement, and fuse these data with the
[6], Ultra-Wideband (UWB) [7], and LiDAR [8], among oth- 1,044 visual-inertial odometry (VIO) systems through an

ers. However, methods based on GPS and external ground optimization-based backend [12]. This method effectively

wireless base stations can become unreliable in complex en-,jjreqses the limitations of filter-based methods; however,
vironments such as forests and urban canyons. Therefore, it increasing the scale of the swarm leads to a rapid increase

is of great importance for research that UAVs in a swarm can computational load, which is an urgent issue that needs

perform relative positioning through onboard sensors. to be addressed in practical applications. In this context, re-

UAVs are capable of carrying different types of sensors  goarchers have proposed distributed optimization approaches,
for relative measurements, which can be categorized into iino partial measurement constraints within the swarm in-
distance measurement, relative direction measurement, and stead of global information [13], [14], [15]. In this mech-

state estimation depending on the type of measurement val-
ues. Due to the limited range and accuracy of individual sen-
sors, the relative positioning issues in UAV swarms require

anism, identifying the optimal measurement constraints for
optimization is crucial to achieve a balance between compu-
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tational complexity and accuracy. The effect of each pair of
measurement constraints on relative positioning accuracy de-
pends not only on sensor accuracy, but also on the topology of
the swarm and the actual relative positions between the UAVs.
These issues are crucial in the distributed relative position-
ing process of large-scale swarms and are rarely considered
in current research. The introduction of the Fisher Informa-
tion Matrix (FIM) and the Cramér-Rao Lower Bound (CRLB)
theory could be a promising approach to solve this problem
[16]. Fisher information is a measure of the expected amount
of information about an unknown parameter that a single ob-
servation can provide. It can be used to predict the quality
of sensor data and has already been applied to localization
and topology optimization problems in wireless ground sen-
sor networks [17], [18]. However, its integration with col-
laborative localization for UAV swarms has received limited
attention in previous research.

In this work, we propose a distributed relative position-
ing method for UAV swarms that adaptively selects the op-
timal measurement constraints in the computational process.
Firstly, using the inter-UAV relative distance measurements,
the relative angle measurements, and the self-pose estimation
results of each UAV, we formulate a distributed graph opti-
mization (DGO) problem based on graph theory for swarm
relative positioning. To evaluate the quality of the onboard
sensor data, we introduce FIM and the CRLB theory. This
approach allows us to identify the sensor data that are most
beneficial for improving relative positioning accuracy from a
multitude of measurement constraints. Finally, the selected
data are used for swarm relative positioning. We have de-
veloped a UAV swarm model and validated the effectiveness
of the proposed method using simulation data. The results
show that our method achieves theoretically optimal accu-
racy in the distributed optimization process compared to se-
lecting fixed pairs of measurement constraints or randomly
selecting measurement constraints, particularly in scenarios
where the swarm topology is complex or undergoes dynamic
changes. The proposed method represents the first attempt
to incorporate FIM in the constraint selection for distributed
graph optimization-based localization in UAV swarms, and
contributes to improving the accuracy and real-time perfor-
mance of relative positioning. This work lays the founda-
tion for further collaborative swarm control and planning mis-
sions.

2. DISTRIBUTED RELATIVE POSITIONING FOR UAV

SWARMS WITH OPTIMAL MEASUREMENT SELECTION

This study addresses the relative positioning problem be-
tween UAVs, independent of ground anchors or satellite
bases. As shown in Fig. 1 (a), most existing studies use exter-
nal wireless nodes to determine the positions of UAVs [19],
[20], which limits their flight capabilities to the coverage ar-
eas of these nodes. Moreover, any interference in the com-
munication between the nodes and the UAVs in complex en-
vironments can lead to failure in positioning. To improve the
autonomy of UAV swarms, the relative positioning between
UAVs has attracted increasing research interest, as shown in

Fig. 1 (b). The relative positioning accuracy depends not only
on the sensor errors and algorithms, but also on the formation
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configuration of the UAVs. Fig. 1 (c) shows two examples:
one shows a swarm formation that facilitates relative position
calculation, and the other shows a formation that is unsuitable
for such calculations.

(a)

(b)

Appropriate formation XL
for relative positioning ~ -~ Inappropriate formation
) * for relative positioning yfb o>
z -~ )
y
b o
3 X
©

Fig. 1. Schematic diagram of relative positioning for UAV swarm.
(a) Positioning based on external anchors. (b) Anchor-free relative
positioning. (c¢) The influence of formation on positioning accuracy.

In the relative positioning problem of large-scale UAV
swarms, we found that using the full measurement data to cal-
culate the relative positions is computationally expensive and
time-consuming. To overcome this limitation, we have devel-
oped an innovative distributed computing architecture that in-
telligently selects optimal measurement constraints from the
swarm’s sensor data. In this context, the term "optimal" refers
to the selection of an optimal subset of a predetermined size
from the entire sensor data set, such that the selected sub-
set minimizes the relative positioning error while maintain-
ing the specified subset size constraint. This advanced ap-
proach not only significantly reduces the computation time
but also improves the mutual positioning accuracy through
its adaptive constraint selection mechanism. In the follow-
ing sections, we provide a comprehensive description of our
proposed methodology.

A. Distributed graph optimization for relative positioning

In this section, we introduce the DGO mechanism for co-
operative relative positioning of UAV swarms, as shown in
Fig. 2. The UAV swarm is modeled as a mathematical graph
G = (V,E), where the set of vertices V in the graph represents
the collection of UAV position vectors, and the set of edges E
in the graph represents the measurement constraints between
the UAVs, including distance measurement constraints, angle
measurement constraints, and state estimation constraints. By
decomposing the overall topology of the swarm into multiple
subgraphs, distributed optimization computations can be per-
formed locally on each UAV platform. By sharing the local
calculation results through inter-UAV communication, this
approach improves the computational efficiency while ensur-
ing the accuracy of the results.
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Fig. 2. The DGO scheme for UAV swarm.

The process of DGO is described as follows. Consider
a swarm with N UAVs, whose position set is denoted by
P = {p1,p2,--,pn}. Let d}"; be the measured distance be-
tween UAV i and UAV j (i, j < N), which follows a Gaussian
distribution:

d"; =’ (pi,p;) +N(0,23) (1)
where A9 is the distance measurement function, and Zfi is the
variance of the Gaussian error. In real-world systems, inter-
UAV relative ranging is typically based on onboard UWB
nodes, which enables anchor-free and omnidirectional dis-
tance measurements.

Furthermore, let 9:’; be the measured relative angle be-
tween UAV i and UAV j (i, j < N), and we have

67 = h® (pi,p;) + N (0,%5) )
where h° is the angle measurement function, and 229 is the
variance of the Gaussian error. Relative angle measurements
are usually performed by onboard vision systems. However,
due to the limited FOV of cameras, a single UAV may have
difficulty observing all cooperative targets if the number of
UAVs in the swarm is large. Consequently, 6; ; may not exist
between each pair of UAV i and j in the swarm.

In general, UAVs are equipped with pose estimation sys-
tems for single-unit attitude control. Let p} be the position of
UAV i obtained from the state estimation system:

p; =/ (pi) +N(0,%F) (3)
where /° is the state measurement function, and Zf is the vari-
ance of the Gaussian error. Although the pose estimation
system can directly determine the position of the UAV, the
estimation error may increase with time and flight distance.
This is because pose estimation systems usually rely on iner-
tial sensors and measurement methods, such as inertial mea-
surement units (IMU), optical flow, and VIO. The process of
integrating acceleration and velocity measurements can lead

to an accumulation of errors. For swarm relative positioning,
inter-UAV relative measurements are required to correct for

the drift between the individual UAVs.
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Based on the aforementioned measurements, a distributed
optimization problem for swarm relative positioning can be
formulated. In the distributed scheme, each UAV in the
swarm (UAV i) considers its own position p; as the unknown
variable to be optimized. We define the distance cost function
for UAV i as Jid , which can be expressed as

N
Ji = ) ||dfflj—Hpi—Pj||2sz
jeof

“)

where Of’ is a set of UAV indices. If the distance measure-
ment value between UAV i and UAV j is used in the optimiza-
tion, then index j is stored in O;i . P; is the position of UAV
Jj estimated by its local distributed optimization. We assume
that UAV i can also determine p; through inter-UAV com-
munication and use it for its local optimization. The detailed
information exchange and iterative process can be found in
our previous work [21].
The relative angle cost function for UAV i is defined as J?,
which is given by
7 =X ller—< vl )
o J/1Lg

: 6
Jj€O;

where Z(-,-) represents the relative angle operator. The set
Of-9 represents the index set of cooperative targets that can be
observed by UAV i.
Similarly, we define the cost function for state estimation
as follows:
Ji = lpi—pil, ©)
Based on (4)-(6), we formulate the distributed optimization
problem as follows:

pi = argmin (de;" +kgJ? +kSJ,:“) )
Pi

where pP; is the estimated position of UAV i. k4, kg and k; are
user-defined weighting coefficients. In previous research, the
method for optimal weight selection was analyzed based on
the CRLB and Bayes’ theorem. The results show that theoret-
ically optimal performance can be achieved when the weights
are inversely proportional to the variances. The weighting co-
efficients can be dynamically adjusted based on the variances.

After optimization, each UAV shares its estimated local po-
sition with other UAVs via inter-UAV communication so that
all UAVs can acquire the relative positions of cooperative tar-
gets at each time step.

For small-scale swarms, each UAV can perform a DGO
with the relative measurement results of all other cooperative
targets. In our previous work, we conducted experiments on
DGO in a 4-UAV swarm and demonstrated the effectiveness
of the proposed method [21]. However, when the swarm size
is large, it is necessary to select a limited number of suit-
able measurement conditions for computation due to the lim-
ited sensing capabilities and computational power of a single
UAV. More specifically, the swarm must be able to adaptively
adjust Of and Ol-e in (4) and (5) based on the swarm topology
and sensing accuracy to balance inter-location precision and
computational efficiency. The proposed measurement con-
straint selection method is presented in the following section.
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B. Determination of optimal measurement constraints
based on FIM

First, we give the definitions of the FIM and the CRLB.
Suppose y € R? is continuous random variable that depends
on x € R". The FIM is given by

dln
p( )] ®)

(P5)

where E[] is the expectation operator and p (-) is the proba-
bility density function. We define % (y) as an unbiased esti-
mator of x; therefore, we have

dInp(y|x)
Jx

FIM (x) =E

Ele(x)] =E[X(y)—x] =0 9
According to the Cramér-Rao theorem, the following in-
equality holds:

Cov[g(y)] =E {e (x)e(x)T} >CRLB(x)  (10)
where Cov[X(y)] denotes the covariance of %(y), and
CRLB (x) is the Cramér-Rao Bound matrix, which can be
given by

CRLB (x) = FIM (x) ' (11)

Let x be the set of state vectors related to swarm relative
positioning, while y denotes the set of measurement values.
According to the Gaussian noise model, we have

y=h(x)+v,v~N(0,R) (12)
Then, the FIM can be given by
FIM (x) = H(x)" R"'H (x) (13)

where H (x) = 0h (x) /0x. Letx; = [x;,y;]" be the state vector
of UAV i. Considering the measurement between UAV i and

UAV J, let yij = |d75, 0
and relative angle measurements between UAV i and UAV ;.

The measurement function /% (-) can be given by

T
} be the set of relative distance

V/(Xi-xj)z'F(Yi—-Yj)z
atan (xi — )

where atan (-) is the arctangent operator. We define r; ; =

Yi—yj
(rfj,rf]) = (x; —xj,yi—yj) as the relative state vector be-
tween UAV i and UAV j.

Specifically for situations in which the information about
the relative distance or relative angle between the UAVs is

not available, we have

(14)

h (x;)

N T
[Hri,juz atan(f))] ., jeDNG;
.. T
W)= esl, 0o | . jebi-e
{ 0 atan(;:;;) r, jE®;—D;
(15)

where ||r; ||, = \/(xi —xj)* 4 (yi —y;)* is the 2-norm of 1, ,
D; is the set of indices of the UAVs capable of performing
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relative distance measurements with UAV i, and ©; is the set
of indices of the UAVs capable of performing relative angle
measurements with UAV i. The measurement matrix H"/ (x;)
can be expressed as

v

ij "ij
FT Tl | epine
i,j i,j
2 2
L frislly sl
N [ ]
HY (x;) = [eill,  rsll, |, jeDi—©; (16)
0
. 0
n -t |, JEB—D;
2 2
L (sl sl

We assume that each UAV uses the data from N, coopera-
tive UAVs for DGO computations. Let O; be the set of indices
of all UAVs that participate in the local computation of UAV
i, along with its own index. Then we define the measurement
quality evaluation function for all cooperative targets as

F=Y —In(|JFIM" (x))|)
J€EO;

A7)

where |FIMU (x,-)‘ denotes the determinant of the FIM.
Based on the aforementioned FIM computation process,
we can identify the optimal constraints for relative position-
ing from numerous measurement constraints. Let N; be the
set of indices of all UAVs that can perform relative measure-
ments and communicate with UAV i. For a user-defined N,,
we can derive O; from N;:
O; =argminF;,0; CN; (18)

0O;

Then, we can derive Ofi and O? from O;, which are used
for the DGO calculations in (6) and lead to the final inter-UAV
relative positioning results.

The optimization problem in (18) is a combinatorial op-
timization task to select a subset of N, neighbors from the
set N;. Applying a brute-force approach would require eval-
uating all possible combinations, especially for large-scale
swarms. We use a greedy algorithm to solve this problem
efficiently. The objective function F; is an additive sum of
individual quality metrics for each neighbor, such that the
global minimum can be found by individually minimizing
each term. Consequently, a greedy strategy that selects the
neighbors with the smallest individual metrics is guaranteed
to be optimal. The algorithm proceeds as follows:

1) For each candidate neighbor j € N;, compute its individual
contribution to the objective function using (18).

2) Sort all candidate neighbors in N; in ascending order ac-
cording to their corresponding metric.

3) Select the first N, neighbors from the sorted list to form
the optimal set O;.
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The overall complexity is the sum of these steps, where the
dominant term is the sorting operation. Therefore, the total
computational complexity of our measurement selection al-
gorithm is O (|N;|log (|N;])). This polynomial-time complex-
ity is highly efficient and ensures that the selection process
remains computationally feasible for real-time computation,
even as the swarm size increases.

Algorithm 1 DGO with optimal measurements selection
based on FIM

Input: Distance measurements {dlm/| JjE€ Di}, angle mea-

surements {9[”;| JjE G),}, state estimation p?, the set of

neighbors N;, the number of UAVs utilized in the opti-
mization N,
Output: Optimized relative positions P¥
1: Initialize system
2: while system is running do

3:  for UAV iin swarm S do

4: Obtain {dlmj|] € Di}, {GI?ZU € @i}, and p; from
onboard sensors

5: Receive {f) ilj € N,} from neighbors in N;

6: for jin N; do

7: Calculate H (x;) using (16)

8: Generate FIM"/ (x) from H” (x;) using (13)

9: end for

10: Calculate F; using (17)

11: Optimize O; based on (18) and user-defined N,,

12: Get O¢ and O from O;

13: Optimize p; using (4)-(7)

14: Calculate the relative positions between UAV i and
other UAVs PF using p; and {p;|j € N;}

15: UAV i shares p; to neighbors

16:  end for

17: end while

A key challenge in swarm positioning is that certain topo-
logical configurations can affect the system’s observability.
For example, if multiple UAVs are in a collinear or near-
collinear arrangement, their relative measurements can be-
come linearly dependent. This dependence may cause the
measurement Jacobian matrix H(x) to be rank-deficient.
Since the FIM is calculated according to (13), a rank-deficient
Jacobian leads directly to a singular or near-singular FIM. In
such cases, the system becomes unobservable and the CRLB
for the positioning error would approach infinity.

However, the FIM-based measurement selection method
proposed here contains its own strategy to mitigate this prob-
lem. Our objective function in (18) evaluates the quality
of each measurement based on the determinant of its cor-
responding FIM. If a measurement from a candidate neigh-
bor j produces or enhances a degenerate topology, its asso-
ciated FIM” will be near-singular, so that its determinant
approaches zero. Consequently, the quality metric for this
neighbor, —In (|FIMY (x;)|), approaches positive infinity.

During the optimization described in (18), the proposed
algorithm tries to select the N, neighbors with the smallest
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quality metrics. Therefore, the algorithm automatically pe-
nalizes and discards measurements that affect the system ob-
servability. This ensures that the subgraph selected for the
DGO maintains a strong observability, thus improving the ro-
bustness and accuracy of the final positioning solution.

Furthermore,the DGO approach cannot guarantee accuracy
if the observability is significantly degraded due to changes
in the formation topology. In such circumstances, the solu-
tion robustness can be improved by dynamically increasing
the weighting of the robot’s self-pose estimate (which is less
affected by the formation changes) within the optimization
problem.

The computational process of the proposed method is illus-
trated in Algorithm 1.

3.

A. Simulation setup

RESULTS AND ANALYSIS

12 drones 24 drones
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Fig. 3. UAV swarms used in the simulations. (a) 12-UAV swarm.
(b) 24-UAV swarm. (c) 36-UAV swarm. (d) 100-UAV swarm.

To evaluate the effectiveness of the proposed method for
large-scale UAV swarm relative positioning problems, we
conducted numerical experiments, using the proposed FIM-
based method to select the optimal measurement constraints
for DGO. As shown in Fig. 3, four groups of swarms with
different sizes were used, consisting of 12, 24, 36, and 100
UAVs, respectively. In the first three groups of swarms,
the UAVs were arranged in a rectangular formation; in the
swarm of 100 UAVs, their positions were randomly dis-
tributed within a 200 m x 200 m area. Assume the rela-
tive measurement errors between the UAVs are: X; = 0.1m
and Xy = 3°, together with a state estimation error of ¥; =
Im. The simulation model was developed using MATLAB
R2022b and ran on a computer equipped with an Intel i5-
12500H 2.50 GHz processor and 16 GB RAM. The simula-
tion parameters and error characteristics in this section are
consistent with the findings from our previous research [21]
in real-world scenarios.
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In the proposed method, for a given number N,, we select
N, UAVs from the swarm to participate in the computation
process of UAV i by minimizing F;. Then the relative po-
sitions can be solved with DGO. For comparison, we used
five other methods to compute the relative positions: 1) state
estimation: each UAV computes its position using only its
own state estimation system; 2) centralized graph optimiza-
tion (CGO): a central node collects all measurement data (dis-
tance, angle) from each UAV in the swarm and then performs
a global graph optimization to compute the relative positions;
3) distributed filtering (DF): each UAV exchanges its state es-
timate and covariance information with its neighboring nodes
to perform prediction, and uses the relative distance and an-
gle measurements to update the steps based on a typical dis-
tributed Kalman Filter; 4) DGO-F;-max: each UAV selects
N, neighbors with the largest F; values for DGO; 5) DGO-F;-
random: each UAV randomly selects N, neighboring UAVs
for the DGO computations.

15

Swarm trajectory
10+ Initial position of drones|

Y (m)
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=201
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Fig. 4. The flight trajectory of the swarm.

In each simulation group, the UAVs follow a circular tra-
jectory at a constant speed of 1 m/s, traveling a total distance
of 100 m. For example, the flight trajectories of the aforemen-
tioned 12-UAV swarm are shown in Fig. 4. We varied N, and
analyzed the relative positioning error of the aforementioned
methods. For each set of parameters, we use the average er-
ror value in the flight process to access the final error size.
Define the average relative positioning error of the swarm for
each test as follows:

1y
MAE = N Z”(pi_pcen) — (Pi = Peen) |2 (19)
i=1

where pc., is the position of the geometric center of the
swarm, and Py, is the estimated value of pce,,.

B. Large-scale UAV swarm simulations

The results of the numerical experiments are shown in
Fig. 5. It can be observed that the magnitude of the state esti-
mation error remains largely consistent for experiments with
different numbers of UAVs and different NV, values. Without
correcting the inter-UAV relative positions by relative mea-
surements, the state estimation method cannot be directly ap-
plied to swarm localization. The errors of the CGO and DF

methods are smaller compared to the state estimation meth-
ods, but they have inherent drawbacks: the DF method con-
verges slowly when the number of nodes is large, and their
estimation errors are sensitive to initial values; CGO uses rel-
ative measurements between all UAVs in the swarm, but when
the number of nodes is large, a high-dimensional optimiza-
tion problem of dimension 2*N (N is the number of UAVs)
must be solved, which is computationally complex, difficult
to converge to the optimal solution, and requires extensive
inter-UAV information exchange.
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Fig. 5. Relative positioning error variations with respect to N,
across four methods. (a) Error curves for the 12-UAV swarm. (b)
Error curves for the 24-UAV swarm. (c) Error curves for the 36-
UAV swarm. (d) Error curves for the 100-UAV swarm.
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The remaining three DGO-based methods all show a sig-
nificant corrective effect on the positioning errors, resulting
in an lower overall error than that of the state estimation er-
ror. Moreover, the errors of the three methods decrease with
increasing N,. Among the methods mentioned above, the
method that maximizes F; has the largest total error. This
is due to the negative correlation between F; and the theoret-
ical error, which indicates that this method includes the least
suitable measurement constraints for localization in the cal-
culation process. The total error of the method in which par-
ticipants are randomly selected for positioning calculations is
smaller than that of the F;-max method. However, for specific
values of N,, e.g. when N, = 3, the error becomes unsta-
ble. The observed error fluctuations are due to the stochas-
tic nature of the selection process and its interaction with the
swarm’s topology. As discussed in Section 2, certain geo-
metric configurations of UAVs can degrade the system’s ob-
servability. This leads to a rank-deficient Jacobian matrix and
consequently a near-singular FIM. By its very nature, the ran-
dom selection method occasionally and unintentionally se-
lects such ill-conditioned subsets of neighbors.

Among the four methods, the proposed Fj-min method
achieves the minimum error and keeps the error constant
within 0.5 m across different configurations of swarm size
and N,. This is because the minimization of F; ensures that
the sensor data included in the calculations makes the greatest
contribution to improving accuracy. Therefore, this method is
highly suitable for distributed calculation scenarios.

Furthermore, we observed the impact of changes in N,
on the localization error. Within the distributed computing
framework, increasing N, improves accuracy but at the cost
of higher computational overhead. Therefore, it is important
to determine an appropriate value of N, in order to achieve
a balance between accuracy and computational cost. In the
four experimental groups shown in Fig. 5, the error of the
proposed method decreases significantly with the increase of
N, when N, < 10. Beyond this threshold, the error converges
towards the theoretical minimum and stabilizes.

Fig. 6 illustrates the variation in computation time with
N,. Since the dimensions of the variables to be optimized
in the proposed DGO computation do not increase with
the number of UAVs, the trend in the computation time
shows a relatively smooth variation. Consequently, it is
justified to set N, below 10, as this achieves accuracy
close to the theoretical minimum while the computational
overhead remains low. In particular, the computation time
per step remains at around 10 ms—Iess than half the time
required for N, = 100. Meanwhile, the computation time per
iteration in CGO increases exponentially with the number
of drones, which is significantly higher than the proposed
method. When the number of drone agents reaches 100, the
single-step computation time on a PC is 3.5 s, indicating that
it is difficult to meet the real-time requirements of large-scale
swarms in engineering practice.
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C. Variable error scenarios

We also investigated the adaptability of the proposed
method to different error conditions. For the 100-UAV swarm
with configurations of N, =4, 6, 8, and 10, the parameter pairs
(X4,Lg) were assigned values of (0.1 m, 3°), (0.2 m, 6°), (0.3
m, 9°), and (0.4 m, 12°), respectively. Comparative localiza-
tion errors of the four methods under these heterogeneous er-
ror conditions are shown quantitatively in Fig. 7. The results
show that the localization errors of the three relative position-
ing methods progressively increase with increasing sensing
errors. However, the proposed method consistently shows
significantly lower localization errors under different error
conditions, confirming its adaptability to heterogeneous er-
ror scenarios. In practical applications, the proposed method
is expected to demonstrate robust adaptability for UAVs with
different sensing hardware.

D. Dynamic swarm formation reconfiguration

To evaluate the robustness of the proposed method under
different UAV swarm formation topologies, we conducted
a simulation experiment for dynamic formation reconfigura-
tion. As shown in Fig. 8, a 24-UAV swarm was used to suc-
cessively transition from a rectangle formation to a circular
formation and then to a V-formation. The entire reconfigura-
tion process lasted 100 seconds. During the transformation,
the relative positioning error of the swarm was calculated us-
ing the six aforementioned methods.

As shown in Fig. 9, the error trajectories during the dy-
namic topology reconfiguration show a remarkable increase
in magnitude compared to the static topology cases. More-
over, the errors exhibit a certain degree of random walk be-
havior due to the frequent communication disruptions and for-
mation adjustments in dynamic environments.

As the simulation results show, the proposed method adap-
tively selects the optimal constraints in dynamic topology
changes, which significantly reduces the average localiza-
tion error. Table 1 summarizes the statistical metrics (mean
absolute error (MAE), standard deviation (STD), and maxi-
mum error (MAX)) of the six methods, which further confirm
the robustness of the proposed approach in dynamic environ-
ments.



Fig. 7. Relative positioning error for four methods in the 100-UAV
swarm under different sensing conditions. (a) N, = 4. (b) N, = 6.
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Fig. 8. Dynamic formation reconfiguration. (a) Transformation
from rectangle formation to circular formation. (b) Transformation
from circular formation to V-formation.

4. CONCLUSIONS

In this paper, we investigate the issue of selecting appro-
priate relative sensor data for computation in the context of
distributed relative positioning in large-scale UAV swarms to
improve accuracy while keeping the computational load low.
First, we propose a DGO method to calculate the relative po-

sitions within the swarm. Then, based on CRLB and FIM
theory, we establish a criterion for selecting UAVs partici-
pating in the computation when the number of neighboring
UAVs involved in the distributed computation is fixed for each
UAV. This criterion is determined by considering the swarm’s

Y (m)
o

15

topological structure and the accuracy of the relative measure-
ments. Finally, we show through numerical experiments that
the proposed method effectively corrects the drift in the state
estimation systems of large-scale UAV swarms. The achieved
relative positioning accuracy of the swarm is very close to the
theoretical optimum compared to other measurement data se-
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lection methods. Our method achieves a computation time of
less than 30 ms for up to 100 UAVs, thus meeting the time
requirement for commercial micro-UAV autopilots. The ap-
proach can be extended to include heterogeneous sensors.
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