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Abstract: Photoacoustic (PA) imaging is a hybrid technique that combines light illumination and ultrasound detection to generate images of
tissue. Advances in laser technology allow laser diodes that are low cost, compact, and have a high pulse repetition frequency (PRF) to
improve the frame rate and signal-to-noise ratio (SNR) of PA imaging. This improvement is achieved by employing PA-coded excitation
techniques. However, PA-coded excitation is limited by side-lobes and artifact signals, particularly when the code length is short. Pulse
position modulation (PPM) is a type of coded excitation that achieves the highest code gain with a short code length. This study explores
a signal-processing approach that integrates PPM-coded excitation with a denoising autoencoder to reduce the generated side lobs and artifact
signals and enhance the SNR of the PA signals. The denoising autoencoder is designed to address the varying shapes of side lobes that occur
with different PPM code lengths, resulting in improved attenuation and removal of artifacts and background noise. The results show that the
denoising autoencoder is particularly effective when the amplitude of the decoded PA signal exceeds that of the background noise, enabling
reduced acquisition time and memory requirements for RF data collection. This work offers a promising approach to overcoming the
limitations of PPM-coded excitation in PA imaging, supporting further improvements in the quality and reliability of PA signals for various
medical applications.
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1. INTRODUCTION

Photoacoustic (PA) imaging, also known as optoacoustic
imaging, is a hybrid technique that generates images by
combining optical light and ultrasound detection [1]. This
method involves illuminating biological tissue with a short-
pulse laser. The light is absorbed by optically active
molecules within the tissue. This absorbed light energy is
converted into heat, causing rapid thermal expansion and
generating acoustic waves known as PA waves, which are
detected by ultrasound transducers [2]. PA imaging has
arange of applications in the medical field, including
biomedical research and clinical diagnostics. For example, it
can monitor tumor angiogenesis, map blood oxygenation, and
perform functional brain imaging. Additionally, it is used to
detect skin melanoma and measure methemoglobin levels [2],
[3].

Significant advances in laser technology have
revolutionized the capabilities of PA imaging. Various pulsed
lasers, such as Nd: YAG lasers, dye lasers, and semi-
conductor lasers, have contributed to the development of the
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PA imaging field. Nd: YAG lasers are known for their high
energy, short pulse duration, and excellent beam quality.
However, they also have limitations, including high cost,
large size, and a low pulse repetition rate (approximately
10 Hz), which can affect the imaging frame rate [4], [5]. In
contrast, semiconductor lasers, such as diode lasers, are
compact, cost-effective, and can be directly modulated.
Despite these advantages, diode lasers often have low output
energy and limited beam quality [4], [6], [7]. To overcome
diode laser limitations, various signal-processing techniques,
including averaging techniques and coded excitation
methods, may be used in image processing, particularly for
image denoising, enhancement, and ultrasound/PA imaging
[8]. Although averaging is limited by the acoustic signal's
flight time, PA-coded excitation (PACE) provides a viable
solution to this limitation [9], [10].

Pulse position modulation (PPM) is a type of coded
excitation method that has been applied to PA imaging. This
type of coded excitation achieves the highest code gain with
a short code length [11]. However, artifact signals associated
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with the PPM coding method are a well-documented
challenge that can negatively affect the quality and reliability
of PA signals [12]. To address this limitation, this study will
explore a signal processing approach that integrates the PPM-
coded excitation technique with a denoising autoencoder to
reduce artifact signals in the decoded PA signals and improve
the signal-to-noise ratio (SNR).

2. MATERIALS & METHODS

A. Pulse position modulation

As mentioned earlier, PPM is a type of coded excitation
method that has been applied to PA imaging [11]. PPM relies
on the time shift between the sequence of transmitted laser
pulses, as shown in Fig. 1. In this method, the pulse repetition
interval between the first two laser pulses is designated as z..
Subsequently, the pulse repetition interval increases by
a small time step (zs) as the code length increases [11].

LASER Pulses

T T+ T

Time (ns)
Fig. 1. Schematic of the transmitted laser pulse sequence for PPM.

The increment in the pulse repetition interval should not
exceed the flight time of the acoustic signal from the
maximum target depth (ze) to achieve maximum code gain
(Nmax). The maximum code length to obtain maximum code
gain (Nmax) can be calculated using (1) [11].
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When laser pulse sequences of PPM are transmitted to the
imaging target, sequences of PA signals are received by the
ultrasound transducer. However, these signals contain both
the actual PA signals and noise. To extract the actual PA
signal, the received PA signal sequence is convolved with the
inverse transmitted PPM code sequence, as shown in (2) [11].

yrem (K) = (Aph (k) * hsys (K) + (k) * A(K) 2

Here, yprm(K) is the decoded PA signal, Ap(K) is the
generated sequence of PA signals, hss(K) is the impulse
response of the system, n(k) is the background noise, and
A(—K) is the inverse transmitted PPM code sequence.

B. Denoising autoencoder

In general, the autoencoder is a type of neural network
based on unsupervised learning algorithms [13]. An
autoencoder neural network consists of two parts: the encoder
and the decoder. In the encoder part, the dimension of the
input signal is reduced, and its features are learned. In the
decoder part, the input signal is reconstructed from the
dimensional reduction signal based on the learned features.

Through this process, the autoencoder neural network learns
to reconstruct the input signal with minimal loss, making it as
similar as possible to the original input signal [13], [14]. The
denoising autoencoder, a special type of autoencoder, is used
to improve the SNR of the input signal by compressing the
background noise signal (unwanted signal). In the denoising
autoencoder, the input signal is a noisy signal consisting of
the original signal combined with a random noise signal. This
noisy signal is compressed, and its features are learned in the
encoder part. The denoised signal is then reconstructed from
the compressed signal based on the learned features in the
decoder part. This reconstruction process is trained to
minimize the loss value between the original and
reconstructed signals (denoised signal), as shown in Fig. 2
[13]-[15].
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Fig. 2. The diagram shows the process of the denoising
autoencoder.

C. Combination of PPM and denoising autoencoder

The main objective of the proposed method is to reduce
artifact signals in the decoded PA signals generated by PPM-
coded excitation, thereby enhancing the SNR of these signals.
This will be accomplished by integrating the PPM-coded
excitation technique with a denoising autoencoder neural
network, as shown in Fig. 3. In this approach, the decoded PA
signal from the PPM-coded excitation is input into the
denoising autoencoder neural network (denoted as y(K)in),
which compresses the input signal and extracts its features.
The compressed signal is then reconstructed (denoted as
y(K)out) based on the learned features. The reconstructed
signal is evaluated against the original signal X(k) using the
mean square error metric. This iterative process continues
until the denoising autoencoder model achieves an acceptable
mean square error value.
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Fig. 3. The combination of the coded excitation technique and the
denoising autoencoder neural network.
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D. Numerical simulation and experiments

Simulation setup

A K-wave toolbox [16], [17] was used to generate PA
emissions for training a denoising autoencoder model. The
PA emissions were produced by multiple absorbers with
varying sizes (radii ranging from 0.1 mm to 2 mm), different
positions relative to the transducer (distances from 10 mm to
60 mm), and distinct initial pressure distributions (ranging
from 0.3 Pa to 2 Pa), as shown in Fig. 4. A 128-element linear
transducer with a central frequency of 5 MHz and
a bandwidth of 90 % at —6 dB was used to receive the
generated PA emissions. The grid size in this simulation was
0.1 mm. The speed of sound in the simulation medium was
set to 1500 m/s, and the sampling frequency was 40 MHz. In
the PPM-coded excitation, the laser pulse repetition
frequency (PRF) and increment step were 500 kHz and
25 seconds, respectively.

Linear US Transducer
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Fig. 4. The graph shows a sample of the simulation setup.

The PPM-coded excitation with different code lengths was
applied to 4,608 RF signals generated using the K-wave
toolbox. This coded excitation produces coded artifacts (side
lobes) in the decoded PA signal. The shape and amplitude of
these coded artifacts are influenced by the code length of the
PPM-coded excitation, as shown in Fig. 5. Specifically,
Fig. 5(a) presents the original PA signal generated from six
absorbers, while Fig 5(b) and Fig. 5(c) show the decoded PA
signal without background noise. In the coded PA signals
shown in Fig. 5(b) through (d), the amplitude of the coded
artifacts (side lobes) decreases as the code length increases.
Furthermore, both the distribution and shape of these artifacts
are affected by the code length and the shape of the imaging
targets.

It is important to note that background noise was added to
the generated sequence of PA signals to achieve a SNR of
—10 dB (rms) before decoding. Fig. 6 shows the original PA
signal and the decoded PA signal from PPM-coded excitation
after the addition of background noise.
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(b) The PA signal that results of PPM coded excitation (N=2).
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(d) The PA signal that results of PPM coded excitation (N=56).

Fig. 5. (a) The original PA signal, (b) The coded PA signal from
PPM with a code length of 2, (c) 14, and (d) 56.
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Fig. 6. (a) Original PA signal with a-10dB (rms) SNR, (b)
Decoded PA signal from PPM-coded signals with code lengths of 2,
(c) 14, and (d) 56, after introducing noise to the generated PA
sequence (—10 dB SNR (rms)).
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The denoising autoencoder was designed and implemented
using TensorFlow, an open-source framework for deep
learning. This neural network architecture was specifically
structured to process one-dimensional RF data as performed
in literature [13]. The input layer contains 1864 nodes,
corresponding to the number of input signal samples. The
encoder component consists of three convolutional layers,
three max-pooling layers, and two dropout layers, as shown
in Fig. 7. The decoder includes three up-sampling layers
followed by three convolutional layers. All convolutional
layers use the rectified linear unit (ReLU) activation function
[18]. The max-pooling layers down-sample the data by
afactor of two, retaining the maximum value within
a window of two samples. The dropout layers, which help
prevent overfitting, randomly deactivate 20 % of the nodes
during training [19]. The up-sampling layers are designed to
reconstruct the input data by doubling the sample rate. The
loss between the original and reconstructed signals is measu-
red using the mean squared error (MSE) metric. Based on the
computed loss, the weights of the nodes are adjusted, and the
neural network model is iteratively retrained.
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Fig. 7. The graph illustrates the structure of the denoising
autoencoder training process.

In this study, a separate training model was developed for
each PPM code length. For each training model, the input
signal for the denoising autoencoder was the decoded PA
signal from the PPM-coded excitation. The loss function,
calculated as the MSE, was the difference between the
reconstructed signal (output signal) and the original PA signal
(without background noise). The Adam optimization
algorithm was used, and the model was trained for 80 epochs.
The dataset was divided, with 80 % used for training and
20 % reserved for testing. Table 1 summarizes the denoising
autoencoder model parameters. The initial training loss was
0.0175, which decreased to 0.00003 by the 80" training
epoch. This demonstrates that the model effectively denoised
the PA signals and reconstructed the original signals with
high fidelity.

Table 1. Denoising autoencoder model summary.

Layer (type) Output shape Param # !
Encoder (sequential)  (None, 1, 233, 8) 6456
Decoder (sequential) ~ (None, 1,1864,1) 12209

1 Total params: 18665 (72.91 KB),
2 Trainable params: 18665 (72.91 KB),
3 Non-trainable params: 0 (0.00 Byte).

Simulation experiments

Two simulation setups were used to test the performance
of PPM-coded excitation with a denoising autoencoder
model. The first simulation setup consists of a single
absorber, as shown in Fig. 8(a), and is used to compare PPM
and PPM with a denoising autoencoder in terms of SNR and
code gain for the decoded PA signals.

In this setup, SNR and code gain were calculated for the
PA signal received by transducer element number 64 (Mid of
linear transducer). SNR was calculated using (3) [20].

S
SNRyp = 2010g10ﬁ ©)

where Sgrus is the root mean square of the target signal and
Nrums is the root mean square of the noise signal. The region
of interest (ROI) for the signal and noise used to calculate
SNR is shown in Fig. 8(b).
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Fig. 8. (a) The first simulation setup for testing PPM with denoising
autoencoder models; (b) the ROI of the PA signal used to calculate
SNR.
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The second simulation setup was used to evaluate the
performance of PPM and PPM with a denoising autoencoder
for multiple absorbers (six absorbers), as shown in Fig. 9(a).
The regions of interest (ROIs) for signal and noise used to
calculate SNR are shown in Fig. 9(b), while the specifications
of the absorbent points are shown in Table 2. In both
simulation setups, the generated PA signals were received by
a 128-element linear transducer array with a center frequency
of 5 MHz and a bandwidth of 4.5 MHz (90 % of the center
frequency). Before applying the denoising autoencoder
model to the decoded PA signals, noise signals were added to
the received coded PA signals to achieve an SNR of
—10 dB (rms).
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Fig. 9. (@) The second simulation setup for testing PPM with
denoising autoencoder models. (b) The ROIls of the PA signal are
used to calculate SNR. The red dashed boxes and black boxes in this
figure indicate the signal and noise regions, respectively.

Table 2. The specifications for absorbent points.

Absorbent point  Radius [mm]
1

1

0.5

1

15

2

Initial pressure [Pa]

SOOI WN P
P ONBREDN

3. RESULTS

A. Testing PPM with denoising autoencoder model (single
absorber)

The comparison between PPM-coded excitation and PPM-
coded excitation with a denoising autoencoder, in terms of
code length and SNR, is illustrated in Fig. 10. In this
simulation, ten samples of PA signals were analyzed to
determine the mean and standard deviation of SNR for each
code length. The maximum code length considered was 56,
which is the maximum code length required to achieve
maximum code gain based on the averaging technique. The
results show that PPM-coded excitation combined with
a denoising autoencoder significantly enhances SNR
compared to PPM-coded excitation alone. Furthermore, using
PPM with a denoising autoencoder achieves higher SNR at
shorter code lengths. For example, with a code length of 10,
the mean SNR was 23.7 dB and the standard deviation was
7.3dB when employing the denoising autoencoder. In
contrast, using PPM alone at the maximum code length of 56
resulted in a mean SNR of only 8.4 dB and a standard
deviation of 0.83 dB.

SNR of Photoacoustic Signal (ROI)
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Fig. 10. The relationship between code length and SNR of PPM and
PPM with denoising autoencoder for the signal absorber.

Fig. 11 shows a comparison between PPM-coded
excitation and PPM-coded excitation with a denoising
autoencoder, focusing on code gain as determined by the
averaging technique. The results show that the denoising
autoencoder enhances the code gain of PPM-coded
excitation. Specifically, using PPM with a denoising
autoencoder achieves higher code gain with a shorter code
length. For example, when PPM-coded excitation is used
with a code length of 10, the mean code gain is 23 dB with
a standard deviation of 6.8 dB. In contrast, using PPM with
a code length of 56 results in a mean code gain of only 6.5 dB
and a standard deviation of 1.1 dB. The simulation results
show that the standard deviation of both the SNR ratio and
code gain is significantly higher when employing PPM-coded
excitation with a denoising autoencoder compared to using
PPM-coded excitation alone. This increased variability is
attributed to the highly correlated background noise ge-
nerated during the decoding process of PPM-coded
excitation. Such correlated noise can amplify artifact signals
(side lobes) depending on their position. The denoising
autoencoder helps to slightly reduce this correlated
background noise, contributing to the observed fluctuations
in SNR and code gain.
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Fig. 11. The relationship between code length code gain for PPM-
coded excitation and PPM-coded excitation withdenoising auto-
encoder for the signal absorber.

10

Noise [ROI] Signal HLII
054
0.0
1 ’
-0.51 ]
A0 I_I |

0.0 10 20 30
Time (us)

Normalized Amplitude (au)

(a) PA signal without noise.

10 SNR=1dB

05

0.0

-0.5 4

-1.04

D:O 10 20 30 40 )

Time (us)

(b) Time-equivalent averaging.

Normalized Amplitude (au)

SNR 4d8

05
0.0
-0.5
1.0 4

0.0 10 20 30 40
Time (us)

(c) PPM (N=10).

|SNR = 29 d8
051
00 .&v_&ﬂ',_»w_..&' +-
-0.5 4
a10] |

0.0 10 20 30 40
Time (us)

(d) PPM (N=10) and denoising autoencoder.

malized Amplitude (ou)

Norn

Normalized Amplitude (au)

Fig. 12. (a) The original PA signals, a PA signal resulting from (b)
Time-equivalent averaging, (c) PPM (N = 10) coded excitation, and
(d) PPM (N = 10) coded excitation with denoising autoencoder.

Fig. 12 presents a comparison of PA signals obtained from
three different techniques: PPM, PPM with a denoising auto-
encoder, and time-equivalent averaging, all using a code
length of 10. The results show that PPM with the denoising
autoencoder improved the SNR by 25dB compared to
standard PPM and by 28 dB compared to the time-equivalent
averaging technique. Additionally, the denoising autoencoder
effectively reduced noise and artifact signals (side lobes)
generated by PPM, as shown in Fig. 12(c) and Fig. 12(d).
However, some parts of the artifact signal remained after
using the denoising autoencoder (Fig. 12(d)). This is due to
the combination of highly correlated background noise with

artifact signals generated during the PPM decoding. As
a result, the denoising autoencoder could not differentiate
between the actual PA signal and the artifact signal.
However, the impact of highly correlated background
noise decreases as the PPM code length increases, as shown
in Fig. 13(a). For instance, when the PPM code length is
increased to 56, the SNR for PPM improves by 7.64 dB
compared to the time-equivalent averaging technique (Fig. 13
(b)). Despite this improvement, side-lobe signals remain in
the decoded PA signal for PPM with a code length of 56
(Fig. 13(c)). Applying a denoising autoencoder significantly
reduces these side-lobe signals, as shown in Fig. 13(d),
resulting in an additional SNR enhancement of 30 dB.
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Fig. 13. (a) The original PA signals, a PA signal resulting from (b)
Time-equivalent averaging, (c) PPM (N = 56) coded excitation, and
(d) PPM (N = 56) coded excitation with denoising autoencoder.

Normalized Amplitude (au)
L5 2 oo =
o @ o 0o

* TsNR=39dB

Normalized Amplitude (au)
Lobh oo oo o
5 o5 @ B

=
[Eg—

B. Testing PPM with denoising autoencoder model
(multiple absorbers)

The impact of code length on the SNR of decoded PA
signals generated by PPM and PPM with a denoising
autoencoder for regions of interest (ROI-1 and ROI-2) is
illustrated in Fig. 14(a) and Fig. 14(b), respectively. SNRs
were calculated using (3), with ten samples used to compute
the mean and standard deviation for each code length. In
Fig. 14(a), the SNR of the decoded PA signal from PPM-
coded excitation shows significant improvement across all
code lengths for ROI-1 when a denoising autoencoder is
applied. For example, at a code length of 10, the denoising
autoencoder improves the SNR by approximately 9.8 dB
(mean). When the code length increases to 56, the
improvement in SNR reaches nearly 28 dB (mean). In
contrast, for ROI-2, the denoising autoencoder does not
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improve the SNR of the decoded PA signal when the code
length is short (less than 13). For instance, at a code length of
7, the SNR decreases by almost 1.7 dB (mean) after applying
the denoising autoencoder. This reduction occurs because the
low SNR of the decoded signal prevents the denoising
autoencoder from effectively distinguishing between actual
PA signals and background noise. The effectiveness of the
denoising autoencoder is evident when the amplitude of the
decoded PA signal is relatively higher than that of the
background noise before its application. For example, at
a code length of 56, the SNR of the decoded PA signal for
ROI-2 is approximately 3 dB (mean), as shown in Fig. 14(b).
Consequently, applying the denoising autoencoder results in
an SNR improvement of nearly 22 dB.
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Fig. 14. The relationship between code length and SNR of PPM and
PPM with a denoising autoencoder for () ROI-1 and (b) ROI-2.

Fig. 15 and Fig. 16 show samples of PA signals generated
using PPM, PPM with a denoising autoencoder, and time-
equivalent averaging, with code lengths of 10 and 56, res-
pectively. Fig. 15(a) shows the original PA signals along with
the ROIs for signal (red dashed boxes) and noise (solid black
boxes) used to calculate the SNR. The SNR for the time-
equivalent averaging signal (Fig. 15(b)) with a PPM code
length of 10 for ROI-1 and ROI-2 is 1.4 dB and -0.7 dB,
respectively. This low SNR is due to the short code length,
which is equivalent to one-time averaging. When PPM
(N =10) is used, the SNR values for ROI-1 and ROI-2 are
3.5 dB and —1.4 dB, respectively. Notably, the SNR for ROI-

1 improves with PPM (N =10) compared to the time-
equivalent averaging technique, while the SNR for ROI-2
decreases. This decrease occurs because the signal amplitude
in ROI-2 is significantly lower than that of the background
noise, and the short code length (N =10) results in a PA
signal with high artifacts, further reducing the SNR. When
a denoising autoencoder is applied to the decoded PA signal
from PPM (N = 10), it successfully extracts the relatively
high-amplitude signal from ROI-1. However, the
significantly lower amplitude signal from ROI-2 is lost, as
shown in Fig. 15(d). In this figure, the SNR for ROI-1 is
19dB, while the SNR for ROI-2 drops to -5dB.
Additionally, the presence of strong artifact signals from the
short code length of PPM-coded excitation, combined with
significant background noise, produces unwanted signals
after applying the denoising autoencoder, as illustrated in

Fig. 15(d).
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Fig. 15. (a) Original PA signals; (b) PA signals from time
equivalent averaging; (c) PA signals from PPM (N =10) coded
excitation; (d) PA signals from PPM (N = 10) coded excitation with
denoising autoencoder.

The performance of the denoising autoencoder on the
decoded PA signal from PPM-coded excitation improves as
code length increases, as shown in Fig. 16. When the code
length is set to 56, the SNR of the decoded PA signal for
ROI-1 and ROI-2 icreases by 5.3 dB and 2.6 dB, respectively,
compared to the SNR of the PA signal generated by the time-
equivalent averaging technique (Fig. 16(b)). The application
of the denoising autoencoder further increases the SNR for
ROI-1 and ROI-2 by 22.3dB and 25 dB, respectively, as
shown in Fig. 16(d). In addition, the low-amplitude signal in
ROI-2 is effectively extracted, and most unwanted signals are
removed. However, when comparing the PA signal generated
by PPM (N = 56) with the denoising autoencoder (Fig. 16(d))
to the original PA signal (Fig. 16(a)), it is evident that some



MEASUREMENT SCIENCE REVIEW, 26, (2026), No. 1, 1-9

high-frequency components of the PPM signal are lost. This
loss occurs because the denoising autoencoder has difficulty
distinguishing these high-frequency parts of the original
signal from unwanted signals, such as side lobes and
background noise.
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(d) PPM (N=56) and denoising autoencoder.

Fig. 16. (a) Original PA signals; (b) PA signals from time-
equivalent averaging; (c) PA signals from PPM (N =56) coded
excitation; (d) PA signals from PPM (N = 56) coded excitation with
denoising autoencoder.
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4. DISCUSSION

The simulation results show that the denoising autoencoder
improves the performance of PPM-coded excitation by
reducing background noise and artifact signals (side lobes) in
the decoded PA signal. However, when the amplitude of the
decoded PA signal is approximately equal to or less than the
amplitude of the background noise, the denoising
autoencoder has difficulty distinguishing the real PA signal
from the noise. This may result in the loss of the real PA
signal after applying the denoising autoencoder. To increase
the amplitude of the decoded PA signal relative to the
background noise, the code length should be increased. This
adjustment improves the performance of the denoising
autoencoder, as shown in Fig. 17.

When the code length is set to 10, the background noise
significantly exceeds the amplitude of the PA signal in the
ROI, resulting in the loss of that part of the signal after
applying the denoising autoencoder. In contrast, increasing
the code length to 40 raises the amplitude of the decoded PA
signal above the noise level, enabling successful extraction of
the PA signal in the ROI after applying the denoising
autoencoder. Using the denoising autoencoder can achieve an
SNR greater than that obtained with PPM-coded excitation at
the maximum code length for the highest code gain. For
example, in the second simulation setup, the mean SNR for
the PA signals in ROI-1 and ROI-2 when using PPM with
maximum code length was approximately 8 dB and 3 dB,
respectively. In comparison, the mean SNR for the PA signals
in ROI-1 and ROI-2 when using PPM (N =40) with the
denoising autoencoder was 33 dB and 26 dB, respectively.
This demonstrates that using a denoising autoencoder allows
PPM-coded excitation to require less acquisition time and
data to achieve a specific SNR.
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Fig. 17. Effect of code length on the performance of the denoising autoencoder.



MEASUREMENT SCIENCE REVIEW, 26, (2026), No. 1, 1-9

5. CONCLUSIONS

In this study, a denoising autoencoder was used to
effectively reduce artifacts (side lobes) associated with PPM-
coded excitation and to minimize background noise. The
denoising autoencoder significantly improves the SNR of PA
signals, even with shorter code lengths, resulting in reduced
acquisition time and lower memory requirements for RF data
collection during decoding. Each PPM code length had
a dedicated denoising autoencoder model to address the
different shapes of side lobes. The results show that the
performance of the denoising autoencoder in attenuating and
removing artifacts and background noise improves when the
amplitude of the decoded PA signal is greater than that of the
background noise. It is important to note that this study was
conducted using a simulation setup. Future work will com-
bine the denoising autoencoder and PPM-coded excitation in
real experimental settings.
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