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Abstract: Photoacoustic (PA) imaging is a hybrid technique that combines light illumination and ultrasound detection to generate images of 
tissue. Advances in laser technology allow laser diodes that are low cost, compact, and have a high pulse repetition frequency (PRF) to 
improve the frame rate and signal-to-noise ratio (SNR) of PA imaging. This improvement is achieved by employing PA-coded excitation 
techniques. However, PA-coded excitation is limited by side-lobes and artifact signals, particularly when the code length is short. Pulse 
position modulation (PPM) is a type of coded excitation that achieves the highest code gain with a short code length. This study explores 

a signal-processing approach that integrates PPM-coded excitation with a denoising autoencoder to reduce the generated side lobs and artifact 
signals and enhance the SNR of the PA signals. The denoising autoencoder is designed to address the varying shapes of side lobes that occur 
with different PPM code lengths, resulting in improved attenuation and removal of artifacts and background noise. The results show that the 
denoising autoencoder is particularly effective when the amplitude of the decoded PA signal exceeds that of the background noise, enabling 
reduced acquisition time and memory requirements for RF data collection. This work offers a promising approach to overcoming the 
limitations of PPM-coded excitation in PA imaging, supporting further improvements in the quality and reliability of PA signals for various 
medical applications. 
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1. INTRODUCTION 

Photoacoustic (PA) imaging, also known as optoacoustic 

imaging, is a hybrid technique that generates images by 

combining optical light and ultrasound detection [1]. This 

method involves illuminating biological tissue with a short-

pulse laser. The light is absorbed by optically active 

molecules within the tissue. This absorbed light energy is 
converted into heat, causing rapid thermal expansion and 

generating acoustic waves known as PA waves, which are 

detected by ultrasound transducers [2]. PA imaging has 

a range of applications in the medical field, including 

biomedical research and clinical diagnostics. For example, it 

can monitor tumor angiogenesis, map blood oxygenation, and 

perform functional brain imaging. Additionally, it is used to 

detect skin melanoma and measure methemoglobin levels [2], 

[3]. 

Significant advances in laser technology have 

revolutionized the capabilities of PA imaging. Various pulsed 

lasers, such as Nd: YAG lasers, dye lasers, and semi-
conductor lasers, have contributed to the development of the 

PA imaging field. Nd: YAG lasers are known for their high 

energy, short pulse duration, and excellent beam quality. 

However, they also have limitations, including high cost, 

large size, and a low pulse repetition rate (approximately 

10 Hz), which can affect the imaging frame rate [4], [5]. In 

contrast, semiconductor lasers, such as diode lasers, are 

compact, cost-effective, and can be directly modulated. 

Despite these advantages, diode lasers often have low output 

energy and limited beam quality [4], [6], [7]. To overcome 

diode laser limitations, various signal-processing techniques, 

including averaging techniques and coded excitation 

methods, may be used in image processing, particularly for 

image denoising, enhancement, and ultrasound/PA imaging 

[8]. Although averaging is limited by the acoustic signal's 

flight time, PA-coded excitation (PACE) provides a viable 

solution to this limitation [9], [10]. 

Pulse position modulation (PPM) is a type of coded 

excitation method that has been applied to PA imaging. This 

type of coded excitation achieves the highest code gain with 

a short code length [11]. However, artifact signals associated 
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with the PPM coding method are a well-documented 

challenge that can negatively affect the quality and reliability 

of PA signals [12]. To address this limitation, this study will 

explore a signal processing approach that integrates the PPM-

coded excitation technique with a denoising autoencoder to 

reduce artifact signals in the decoded PA signals and improve 

the signal-to-noise ratio (SNR).  

2. MATERIALS & METHODS 

A. Pulse position modulation  

As mentioned earlier, PPM is a type of coded excitation 
method that has been applied to PA imaging [11]. PPM relies 
on the time shift between the sequence of transmitted laser 
pulses, as shown in Fig. 1. In this method, the pulse repetition 
interval between the first two laser pulses is designated as τL. 
Subsequently, the pulse repetition interval increases by 
a small time step (τs) as the code length increases [11]. 

 

Fig. 1.  Schematic of the transmitted laser pulse sequence for PPM. 

The increment in the pulse repetition interval should not 
exceed the flight time of the acoustic signal from the 
maximum target depth (τE) to achieve maximum code gain 
(Nmax). The maximum code length to obtain maximum code 
gain (Nmax) can be calculated using (1) [11]. 

 

𝑁max = √2
𝜏𝐸 − 𝜏𝐿 + 2𝜏𝑠

𝜏𝑠
 (1) 

 

When laser pulse sequences of PPM are transmitted to the 
imaging target, sequences of PA signals are received by the 
ultrasound transducer. However, these signals contain both 
the actual PA signals and noise. To extract the actual PA 
signal, the received PA signal sequence is convolved with the 
inverse transmitted PPM code sequence, as shown in (2) [11]. 

 

yPPM (k) = (Aph (k) * hsys (k) + n(k)) * A(–k) (2) 
 

Here, yPPM(k) is the decoded PA signal, Aph(k) is the 
generated sequence of PA signals, hsys(k) is the impulse 
response of the system, n(k) is the background noise, and 
A(–k) is the inverse transmitted PPM code sequence. 

B. Denoising autoencoder 

In general, the autoencoder is a type of neural network 
based on unsupervised learning algorithms [13]. An 
autoencoder neural network consists of two parts: the encoder 
and the decoder. In the encoder part, the dimension of the 
input signal is reduced, and its features are learned. In the 
decoder part, the input signal is reconstructed from the 
dimensional reduction signal based on the learned features. 

Through this process, the autoencoder neural network learns 
to reconstruct the input signal with minimal loss, making it as 
similar as possible to the original input signal [13], [14]. The 
denoising autoencoder, a special type of autoencoder, is used 
to improve the SNR of the input signal by compressing the 
background noise signal (unwanted signal). In the denoising 
autoencoder, the input signal is a noisy signal consisting of 
the original signal combined with a random noise signal. This 
noisy signal is compressed, and its features are learned in the 
encoder part. The denoised signal is then reconstructed from 
the compressed signal based on the learned features in the 
decoder part. This reconstruction process is trained to 
minimize the loss value between the original and 
reconstructed signals (denoised signal), as shown in Fig. 2 
[13]-[15]. 

 

Fig. 2.  The diagram shows the process of the denoising 
autoencoder. 

C. Combination of PPM and denoising autoencoder 

The main objective of the proposed method is to reduce 
artifact signals in the decoded PA signals generated by PPM-
coded excitation, thereby enhancing the SNR of these signals. 
This will be accomplished by integrating the PPM-coded 
excitation technique with a denoising autoencoder neural 
network, as shown in Fig. 3. In this approach, the decoded PA 
signal from the PPM-coded excitation is input into the 
denoising autoencoder neural network (denoted as y(k)in), 
which compresses the input signal and extracts its features. 
The compressed signal is then reconstructed (denoted as 
y(k)out) based on the learned features. The reconstructed 
signal is evaluated against the original signal X(k) using the 
mean square error metric. This iterative process continues 
until the denoising autoencoder model achieves an acceptable 
mean square error value. 

 

Fig. 3.  The combination of the coded excitation technique and the 
denoising autoencoder neural network. 
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D. Numerical simulation and experiments 

Simulation setup 

A K-wave toolbox [16], [17] was used to generate PA 

emissions for training a denoising autoencoder model. The 

PA emissions were produced by multiple absorbers with 

varying sizes (radii ranging from 0.1 mm to 2 mm), different 

positions relative to the transducer (distances from 10 mm to 

60 mm), and distinct initial pressure distributions (ranging 

from 0.3 Pa to 2 Pa), as shown in Fig. 4. A 128-element linear 

transducer with a central frequency of 5 MHz and 

a bandwidth of 90 % at –6 dB was used to receive the 

generated PA emissions. The grid size in this simulation was 

0.1 mm. The speed of sound in the simulation medium was 

set to 1500 m/s, and the sampling frequency was 40 MHz. In 

the PPM-coded excitation, the laser pulse repetition 

frequency (PRF) and increment step were 500 kHz and 

25 seconds, respectively. 

 

Fig. 4.  The graph shows a sample of the simulation setup. 

The PPM-coded excitation with different code lengths was 

applied to 4,608 RF signals generated using the K-wave 

toolbox. This coded excitation produces coded artifacts (side 

lobes) in the decoded PA signal. The shape and amplitude of 

these coded artifacts are influenced by the code length of the 

PPM-coded excitation, as shown in Fig. 5. Specifically, 

Fig. 5(a) presents the original PA signal generated from six 

absorbers, while Fig 5(b) and Fig. 5(c) show the decoded PA 

signal without background noise. In the coded PA signals 

shown in Fig. 5(b) through (d), the amplitude of the coded 

artifacts (side lobes) decreases as the code length increases. 

Furthermore, both the distribution and shape of these artifacts 

are affected by the code length and the shape of the imaging 

targets. 

It is important to note that background noise was added to 

the generated sequence of PA signals to achieve a SNR of  

–10 dB (rms) before decoding. Fig. 6 shows the original PA 

signal and the decoded PA signal from PPM-coded excitation 

after the addition of background noise.  

 
(a) The generated PA signal. 

 
(b) The PA signal that results of PPM coded excitation (N=2). 

 
(c) The PA signal that results of PPM coded excitation (N=14). 

 
(d) The PA signal that results of PPM coded excitation (N=56). 

Fig. 5.  (a) The original PA signal, (b) The coded PA signal from 
PPM with a code length of 2, (c) 14, and (d) 56. 

 
(a) The generated PA signal. 

 
(b) The PA signal that results of PPM coded excitation (N=2). 

 
(c) The PA signal that results of PPM coded excitation (N=14). 

 
(d) The PA signal that results of PPM coded excitation (N=56). 

Fig. 6.  (a) Original PA signal with a –10 dB (rms) SNR, (b) 

Decoded PA signal from PPM-coded signals with code lengths of 2, 
(c) 14, and (d) 56, after introducing noise to the generated PA 
sequence (–10 dB SNR (rms)). 
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The denoising autoencoder was designed and implemented 
using TensorFlow, an open-source framework for deep 
learning. This neural network architecture was specifically 
structured to process one-dimensional RF data as performed 
in literature [13]. The input layer contains 1864 nodes, 
corresponding to the number of input signal samples. The 
encoder component consists of three convolutional layers, 
three max-pooling layers, and two dropout layers, as shown 
in Fig. 7. The decoder includes three up-sampling layers 
followed by three convolutional layers. All convolutional 
layers use the rectified linear unit (ReLU) activation function 
[18]. The max-pooling layers down-sample the data by 
a factor of two, retaining the maximum value within 
a window of two samples. The dropout layers, which help 
prevent overfitting, randomly deactivate 20 % of the nodes 
during training [19]. The up-sampling layers are designed to 
reconstruct the input data by doubling the sample rate. The 
loss between the original and reconstructed signals is measu-
red using the mean squared error (MSE) metric. Based on the 
computed loss, the weights of the nodes are adjusted, and the 
neural network model is iteratively retrained. 

 

Fig. 7.  The graph illustrates the structure of the denoising 
autoencoder training process. 

In this study, a separate training model was developed for 
each PPM code length. For each training model, the input 
signal for the denoising autoencoder was the decoded PA 
signal from the PPM-coded excitation. The loss function, 
calculated as the MSE, was the difference between the 
reconstructed signal (output signal) and the original PA signal 
(without background noise). The Adam optimization 
algorithm was used, and the model was trained for 80 epochs. 
The dataset was divided, with 80 % used for training and 
20 % reserved for testing. Table 1 summarizes the denoising 
autoencoder model parameters. The initial training loss was 
0.0175, which decreased to 0.00003 by the 80th training 
epoch. This demonstrates that the model effectively denoised 
the PA signals and reconstructed the original signals with 
high fidelity. 

Table 1.  Denoising autoencoder model summary.  

Layer (type) Output shape Param # 1 

Encoder (sequential) (None, 1, 233, 8) 6456 
Decoder (sequential) (None, 1, 1864, 1) 12209 

1 Total params: 18665 (72.91 KB),  
2 Trainable params: 18665 (72.91 KB),  
3 Non-trainable params: 0 (0.00 Byte). 

Simulation experiments 

Two simulation setups were used to test the performance 

of PPM-coded excitation with a denoising autoencoder 

model. The first simulation setup consists of a single 
absorber, as shown in Fig. 8(a), and is used to compare PPM 

and PPM with a denoising autoencoder in terms of SNR and 

code gain for the decoded PA signals.  

In this setup, SNR and code gain were calculated for the 

PA signal received by transducer element number 64 (Mid of 

linear transducer). SNR was calculated using (3) [20]. 
 

𝑆𝑁𝑅dB = 20 log10
𝑆RMS
𝑁RMS

 (3) 

 

where SRMS is the root mean square of the target signal and 

NRMS is the root mean square of the noise signal. The region 

of interest (ROI) for the signal and noise used to calculate 

SNR is shown in Fig. 8(b). 

 
(a) 

 
(b) 

Fig. 8.  (a) The first simulation setup for testing PPM with denoising 
autoencoder models; (b) the ROI of the PA signal used to calculate 

SNR. 
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The second simulation setup was used to evaluate the 

performance of PPM and PPM with a denoising autoencoder 

for multiple absorbers (six absorbers), as shown in Fig. 9(a). 

The regions of interest (ROIs) for signal and noise used to 

calculate SNR are shown in Fig. 9(b), while the specifications 

of the absorbent points are shown in Table 2. In both 

simulation setups, the generated PA signals were received by 

a 128-element linear transducer array with a center frequency 

of 5 MHz and a bandwidth of 4.5 MHz (90 % of the center 

frequency). Before applying the denoising autoencoder 
model to the decoded PA signals, noise signals were added to 

the received coded PA signals to achieve an SNR of  

–10 dB (rms).  

 
(a) 

 
(b) 

Fig. 9.  (a) The second simulation setup for testing PPM with 
denoising autoencoder models. (b) The ROIs of the PA signal are 

used to calculate SNR. The red dashed boxes and black boxes in this 
figure indicate the signal and noise regions, respectively. 

Table 2.  The specifications for absorbent points. 

Absorbent point Radius [mm] Initial pressure [Pa] 

1 1 2 

2 1 1 

3 0.5 4 

4 1 2 

5 1.5 5 

6 2 1 

3. RESULTS 

A. Testing PPM with denoising autoencoder model (single 
absorber) 

The comparison between PPM-coded excitation and PPM-
coded excitation with a denoising autoencoder, in terms of 
code length and SNR, is illustrated in Fig. 10. In this 
simulation, ten samples of PA signals were analyzed to 
determine the mean and standard deviation of SNR for each 
code length. The maximum code length considered was 56, 
which is the maximum code length required to achieve 
maximum code gain based on the averaging technique. The 
results show that PPM-coded excitation combined with 
a denoising autoencoder significantly enhances SNR 
compared to PPM-coded excitation alone. Furthermore, using 
PPM with a denoising autoencoder achieves higher SNR at 
shorter code lengths. For example, with a code length of 10, 
the mean SNR was 23.7 dB and the standard deviation was 
7.3 dB when employing the denoising autoencoder. In 
contrast, using PPM alone at the maximum code length of 56 
resulted in a mean SNR of only 8.4 dB and a standard 
deviation of 0.83 dB. 

 

Fig. 10.  The relationship between code length and SNR of PPM and 
PPM with denoising autoencoder for the signal absorber. 

Fig. 11 shows a comparison between PPM-coded 
excitation and PPM-coded excitation with a denoising 
autoencoder, focusing on code gain as determined by the 
averaging technique. The results show that the denoising 
autoencoder enhances the code gain of PPM-coded 
excitation. Specifically, using PPM with a denoising 
autoencoder achieves higher code gain with a shorter code 
length. For example, when PPM-coded excitation is used 
with a code length of 10, the mean code gain is 23 dB with 
a standard deviation of 6.8 dB. In contrast, using PPM with 
a code length of 56 results in a mean code gain of only 6.5 dB 
and a standard deviation of 1.1 dB. The simulation results 
show that the standard deviation of both the SNR ratio and 
code gain is significantly higher when employing PPM-coded 
excitation with a denoising autoencoder compared to using 
PPM-coded excitation alone. This increased variability is 
attributed to the highly correlated background noise ge-
nerated during the decoding process of PPM-coded 
excitation. Such correlated noise can amplify artifact signals 
(side lobes) depending on their position. The denoising 
autoencoder helps to slightly reduce this correlated 
background noise, contributing to the observed fluctuations 
in SNR and code gain. 



MEASUREMENT SCIENCE REVIEW, 26, (2026), No. 1, 1-9 

6 

 

Fig. 11.  The relationship between code length code gain for PPM-
coded excitation and PPM-coded excitation withdenoising auto-

encoder for the signal absorber. 

 
(a) PA signal without noise. 

 
(b) Time-equivalent averaging. 

 
(c) PPM (N=10). 

 
(d) PPM (N=10) and denoising autoencoder. 

Fig. 12.  (a) The original PA signals, a PA signal resulting from (b) 

Time-equivalent averaging, (c) PPM (N = 10) coded excitation, and 
(d) PPM (N = 10) coded excitation with denoising autoencoder. 

Fig. 12 presents a comparison of PA signals obtained from 

three different techniques: PPM, PPM with a denoising auto-
encoder, and time-equivalent averaging, all using a code 

length of 10. The results show that PPM with the denoising 

autoencoder improved the SNR by 25 dB compared to 

standard PPM and by 28 dB compared to the time-equivalent 

averaging technique. Additionally, the denoising autoencoder 

effectively reduced noise and artifact signals (side lobes) 

generated by PPM, as shown in Fig. 12(c) and Fig. 12(d). 

However, some parts of the artifact signal remained after 

using the denoising autoencoder (Fig. 12(d)). This is due to 

the combination of highly correlated background noise with 

artifact signals generated during the PPM decoding. As 

a result, the denoising autoencoder could not differentiate 

between the actual PA signal and the artifact signal.  

However, the impact of highly correlated background 

noise decreases as the PPM code length increases, as shown 

in Fig. 13(a). For instance, when the PPM code length is 

increased to 56, the SNR for PPM improves by 7.64 dB 

compared to the time-equivalent averaging technique (Fig. 13 

(b)). Despite this improvement, side-lobe signals remain in 

the decoded PA signal for PPM with a code length of 56 
(Fig. 13(c)). Applying a denoising autoencoder significantly 

reduces these side-lobe signals, as shown in Fig. 13(d), 

resulting in an additional SNR enhancement of 30 dB. 

 
(a) PA signal without noise. 

 
(b) Time-equivalent averaging. 

 
(c) PPM (N=56). 

 
(d) PPM (N=56) and denoising autoencoder. 

Fig. 13.  (a) The original PA signals, a PA signal resulting from (b) 

Time-equivalent averaging, (c) PPM (N = 56) coded excitation, and 
(d) PPM (N = 56) coded excitation with denoising autoencoder. 

B. Testing PPM with denoising autoencoder model 

(multiple absorbers) 

The impact of code length on the SNR of decoded PA 

signals generated by PPM and PPM with a denoising 

autoencoder for regions of interest (ROI-1 and ROI-2) is 

illustrated in Fig. 14(a) and Fig. 14(b), respectively. SNRs 

were calculated using (3), with ten samples used to compute 

the mean and standard deviation for each code length. In 

Fig. 14(a), the SNR of the decoded PA signal from PPM-

coded excitation shows significant improvement across all 

code lengths for ROI-1 when a denoising autoencoder is 
applied. For example, at a code length of 10, the denoising 

autoencoder improves the SNR by approximately 9.8 dB 

(mean). When the code length increases to 56, the 

improvement in SNR reaches nearly 28 dB (mean). In 

contrast, for ROI-2, the denoising autoencoder does not 
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improve the SNR of the decoded PA signal when the code 

length is short (less than 13). For instance, at a code length of 

7, the SNR decreases by almost 1.7 dB (mean) after applying 

the denoising autoencoder. This reduction occurs because the 

low SNR of the decoded signal prevents the denoising 

autoencoder from effectively distinguishing between actual 

PA signals and background noise. The effectiveness of the 

denoising autoencoder is evident when the amplitude of the 

decoded PA signal is relatively higher than that of the 

background noise before its application. For example, at 
a code length of 56, the SNR of the decoded PA signal for 

ROI-2 is approximately 3 dB (mean), as shown in Fig. 14(b). 

Consequently, applying the denoising autoencoder results in 

an SNR improvement of nearly 22 dB. 

 
(a) 

 
(b) 

Fig. 14.  The relationship between code length and SNR of PPM and 
PPM with a denoising autoencoder for (a) ROI-1 and (b) ROI-2. 

Fig. 15 and Fig. 16 show samples of PA signals generated 

using PPM, PPM with a denoising autoencoder, and time-
equivalent averaging, with code lengths of 10 and 56, res-

pectively. Fig. 15(a) shows the original PA signals along with 

the ROIs for signal (red dashed boxes) and noise (solid black 

boxes) used to calculate the SNR. The SNR for the time-

equivalent averaging signal (Fig. 15(b)) with a PPM code 

length of 10 for ROI-1 and ROI-2 is 1.4 dB and –0.7 dB, 

respectively. This low SNR is due to the short code length, 

which is equivalent to one-time averaging. When PPM 

(N = 10) is used, the SNR values for ROI-1 and ROI-2 are 

3.5 dB and –1.4 dB, respectively. Notably, the SNR for ROI-

1 improves with PPM (N = 10) compared to the time-

equivalent averaging technique, while the SNR for ROI-2 

decreases. This decrease occurs because the signal amplitude 

in ROI-2 is significantly lower than that of the background 

noise, and the short code length (N = 10) results in a PA 

signal with high artifacts, further reducing the SNR. When 

a denoising autoencoder is applied to the decoded PA signal 

from PPM (N = 10), it successfully extracts the relatively 

high-amplitude signal from ROI-1. However, the 

significantly lower amplitude signal from ROI-2 is lost, as 
shown in Fig. 15(d). In this figure, the SNR for ROI-1 is 

19 dB, while the SNR for ROI-2 drops to –5 dB. 

Additionally, the presence of strong artifact signals from the 

short code length of PPM-coded excitation, combined with 

significant background noise, produces unwanted signals 

after applying the denoising autoencoder, as illustrated in 

Fig. 15(d). 

 
(a) PA signal without noise. 

 
(b) Time-equivalent averaging. 

 
(c) PPM (N=10). 

 
(d) PPM (N=10) and denoising autoencoder. 

Fig. 15.  (a) Original PA signals; (b) PA signals from time 
equivalent averaging; (c) PA signals from PPM (N = 10) coded 
excitation; (d) PA signals from PPM (N = 10) coded excitation with 
denoising autoencoder. 

The performance of the denoising autoencoder on the 

decoded PA signal from PPM-coded excitation improves as 

code length increases, as shown in Fig. 16. When the code 

length is set to 56, the SNR of the decoded PA signal for  

ROI-1 and ROI-2 icreases by 5.3 dB and 2.6 dB, respectively, 

compared to the SNR of the PA signal generated by the time-
equivalent averaging technique (Fig. 16(b)). The application 

of the denoising autoencoder further increases the SNR for 

ROI-1 and ROI-2 by 22.3 dB and 25 dB, respectively, as 

shown in Fig. 16(d). In addition, the low-amplitude signal in 

ROI-2 is effectively extracted, and most unwanted signals are 

removed. However, when comparing the PA signal generated 

by PPM (N = 56) with the denoising autoencoder (Fig. 16(d)) 

to the original PA signal (Fig. 16(a)), it is evident that some 
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high-frequency components of the PPM signal are lost. This 

loss occurs because the denoising autoencoder has difficulty 

distinguishing these high-frequency parts of the original 

signal from unwanted signals, such as side lobes and 

background noise. 

 
(a) PA signal without noise. 

 
(b) Time-equivalent averaging. 

 
(c) PPM (N=56). 

 
(d) PPM (N=56) and denoising autoencoder. 

Fig. 16.  (a) Original PA signals; (b) PA signals from time-
equivalent averaging; (c) PA signals from PPM (N = 56) coded 
excitation; (d) PA signals from PPM (N = 56) coded excitation with 
denoising autoencoder. 

4. DISCUSSION 

The simulation results show that the denoising autoencoder 

improves the performance of PPM-coded excitation by 

reducing background noise and artifact signals (side lobes) in 

the decoded PA signal. However, when the amplitude of the 

decoded PA signal is approximately equal to or less than the 

amplitude of the background noise, the denoising 

autoencoder has difficulty distinguishing the real PA signal 

from the noise. This may result in the loss of the real PA 

signal after applying the denoising autoencoder. To increase 

the amplitude of the decoded PA signal relative to the 

background noise, the code length should be increased. This 

adjustment improves the performance of the denoising 

autoencoder, as shown in Fig. 17.  

When the code length is set to 10, the background noise 

significantly exceeds the amplitude of the PA signal in the 

ROI, resulting in the loss of that part of the signal after 

applying the denoising autoencoder. In contrast, increasing 

the code length to 40 raises the amplitude of the decoded PA 

signal above the noise level, enabling successful extraction of 

the PA signal in the ROI after applying the denoising 

autoencoder. Using the denoising autoencoder can achieve an 

SNR greater than that obtained with PPM-coded excitation at 

the maximum code length for the highest code gain. For 

example, in the second simulation setup, the mean SNR for 

the PA signals in ROI-1 and ROI-2 when using PPM with 

maximum code length was approximately 8 dB and 3 dB, 

respectively. In comparison, the mean SNR for the PA signals 

in ROI-1 and ROI-2 when using PPM (N = 40) with the 

denoising autoencoder was 33 dB and 26 dB, respectively. 

This demonstrates that using a denoising autoencoder allows 

PPM-coded excitation to require less acquisition time and 

data to achieve a specific SNR. 

 

 

Fig. 17.  Effect of code length on the performance of the denoising autoencoder. 
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5. CONCLUSIONS 

In this study, a denoising autoencoder was used to 
effectively reduce artifacts (side lobes) associated with PPM-
coded excitation and to minimize background noise. The 
denoising autoencoder significantly improves the SNR of PA 
signals, even with shorter code lengths, resulting in reduced 
acquisition time and lower memory requirements for RF data 
collection during decoding. Each PPM code length had 
a dedicated denoising autoencoder model to address the 
different shapes of side lobes. The results show that the 
performance of the denoising autoencoder in attenuating and 
removing artifacts and background noise improves when the 
amplitude of the decoded PA signal is greater than that of the 
background noise. It is important to note that this study was 
conducted using a simulation setup. Future work will com-
bine the denoising autoencoder and PPM-coded excitation in 
real experimental settings. 
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