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Abstract: Transdermal drug delivery (TDD) is a non-invasive approach for administering therapeutic medications through the skin. This 

research proposes a spine–leaf resistor–capacitor (SLRC) circuit to analyse the impedance characteristics of different skin layers during drug 

delivery. To optimise the SLRC circuit parameters, the Ebola Optimisation Algorithm (EOA) minimises errors and improves computational 

efficiency. The Poisson–Boltzmann–Nernst–Planck (PBNP) model is used to calculate input parameters such as ion concentrations and 

electrotransport flux, to derive the drug concentration based on input parameters. A MATLAB simulator calculates drug penetration across 

stratified skin regions. According to the SLRC results, the Montague, constant phase element (CPE), and Tregear models performed better 

in predicting drug penetration and electrotransport flux than more conventional models. Compared to the traditional Montague and Tregear 

models, the EOA improved performance by reducing the mean absolute percentage error (MAPE) to as low as 0.134. The proposed model 

achieved an 𝑅2 value of 0.98 when validated against the impedance datasets, confirming high prediction accuracy. Furthermore, simulated 

results revealed that an optimal frequency of 4 × 10³ Hz provides the best impedance and drug penetration, demonstrating the importance of 

frequency and current density in increasing drug levels. The proposed model enhances the precision and efficiency of TDD, offering 

significant potential for clinical and pharmaceutical applications. 

Keywords: transdermal drug delivery, iontophoresis, spine–leaf resistor–capacitor, Ebola Optimisation Algorithm, Poisson–Boltzmann–

Nernst–Planck 

1. INTRODUCTION 

In medical history, traditional drug administration methods 
include oral ingestion and hypodermic injections [1]. 
Transdermal drug delivery (TDD) is a technique for 
delivering medications through the skin [2], [3]. TDD is an 
innovative and non-invasive method of administering 
therapeutic agents through the skin to achieve systemic 
effects [4], [5]. TDD systems, such as patches, gels, and 
creams, offer significant benefits over traditional delivery 
techniques, including improved patient compliance, con-
trolled drug release, and fewer adverse effects [6], [7]. TDD 
continues to evolve with advancements in nanotechnology, 
microneedles, and permeation enhancers, broadening its 
potential applications in modern medicine [8]. 

Iontophoresis is a non-invasive technique used to transport 
ions and charged molecules across skin membranes using a 
low-level electrical current [9], [10]. Iontophoresis-based 
sweat testing for diseases such as cystic fibrosis is also used 
in research and diagnostics [11]. The intricate features of hu-
man skin must be considered when administering transdermal 

drugs [12], [13]. The skin contains keratinised cells, sweat 
glands, hair follicles, and pores [14]. Skin impedance as a key 
component of bioimpedance has been used to analyse various 
data about underlying tissues, including fat deposits, moisture 
content, and other relevant factors [15].  

The Nernst–Planck (NP) model [16] describes the 

transport of ions under both concentration gradients and 

electric fields. It considers both diffusion (due to concen-

tration gradients) and migration (due to the electric field). 

 

𝐽𝜏 = −𝐷𝜏∇𝑛𝜏 −
𝑧𝜏𝐹

𝑅𝑇
𝑛𝜏∇𝜑 (1) 

 

where 𝐽𝜏 represents the ion flux, 𝐷𝜏 is the diffusion coefficient 

of the ion species, τ is a general index for ion species used to 

define ion-specific properties such as diffusion and charge, 

𝑛𝜏 is the concentration of the ion species, 𝑧𝜏 is the valence of 

τ, F is Faraday's constant, R is the universal gas constant, T is 

temperature, 𝜑 is the electric potential, and ∇ is the gradient 

operator.  

     Journal homepage:  https://content.sciendo.com 

https://dx.doi.org/10.2478/msr-2025-0038
mailto:maceal@sxcce.edu.in
https://orcid.org/0009-0009-7509-7680
https://content.sciendo.com/view/journals/msr/msr-overview.xml


MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 6, 347-357 

348 

The Poisson–Nernst–Planck (PNP) model [17] extends the 

NP model by incorporating the Poisson equation to account 

for the electrostatic potential distribution within the system, 

which depends on the charge distribution. The Poisson 

equation for the electrostatic potential 𝜑 is given by, 

 

∇2𝜑 = −
𝜌

𝜖
 (2) 

 

where 𝜌 is the charge density and 𝜖 is the permittivity of the 

medium. The PNP model integrates the Poisson equation to 

solve for the electrostatic potential 𝜑, which is influenced by 

the ion distribution. To address this challenge, the PNP model 

can be reformulated to reduce computational overhead by 

representing certain ion species differently. In this alternative 

model, let 𝑛 denote the total number of ion species. The target 

ion species are denoted as 𝑛∝(∝= 1,2,3, … 𝑁𝑁𝑃), where 𝑁𝑁𝑃 

is the number of ions treated using the NP equation. The 

remaining ions, denoted 𝑛𝛽(𝛽 = 𝑁𝑁𝑃 + 1, … , 𝑁𝑐), are mo-

delled using the Boltzmann distribution. Here, 𝑛∝ represents 

the number of target ion species modelled using the Nernst–

Planck equations, and 𝑛𝛽 represents the number of non-target 

ion species modelled using the Boltzmann distribution. The 

index ∝ denotes the index for target ions modelled via the NP 

equations, while 𝛽 denotes the index for non-target ions 

modelled via the Boltzmann distribution.  

Several researchers have proposed electrically equivalent 

models of the skin to account for its dynamic physiological 

stratification. The most commonly used techniques, such as 

the Tregear model [18] and the Montague model [19], classify 

the skin as a resistor–capacitor (RC) layered system. The 

transfer functions of three electrical models of human skin 

(Montague, Tregear, and Lykken models) were analysed in 

terms of physical stratification [20]. A nanomaterial-based 

TDD platform using a nucleic acid framework [26] was 

developed for enhanced photodamage treatment. The results 

demonstrated high drug-loading efficiency and controlled 

release via UV activation. Optical coherence tomography 

(OCT) and fluorescence imaging [27] were employed to 

visualise microneedle-assisted drug diffusion, enabling real-

time tracking of drug delivery depth and efficiency with high 

spatial resolution. A wearable device was designed [28] for 

continuous skin impedance spectroscopy under real-time 

conditions, focusing on conductivity changes over time. 

Moreover, the impedance changes in pig skin were 

investigated using tape stripping [29] to remove layers and 

measure electrical responses. However, experimental 

validation of impedance variability across skin layers lacks 

computational optimisation and electrotransport modelling. 

This research introduces a systematic approach to device-

assisted transdermal drug delivery by integrating physical 

modelling and mathematical frameworks to predict drug 

concentration across skin layers. The key contributions of the 

proposed work are summarised as follows: 

• A novel spine–leaf resistor–capacitor (SLRC) circuit is 

introduced, combining the Montague, constant phase 

element (CPE), and Tregear models to more accurately 

simulate skin impedance across various stratified layers. 

• The PBNP model is incorporated to achieve precise 

calculation of ion transport and drug flux under electric 

fields, improving the predictive modelling of TDD. 

• The Ebola Optimisation Algorithm (EOA) is used to 

optimise the SLRC circuit parameters, significantly 

reducing the computational error and improving 

prediction accuracy. 

• The proposed model is validated across 12 different 

human body regions, revealing the impact of biophysical 

skin properties on drug delivery efficiency, which 

provides valuable insights for clinical settings. 

The rest of the paper is organised as follows: Section 2 

provides a comprehensive description of the proposed 

framework for analysing drug penetration across various skin 

layers; Section 3 presents the results and comparison of the 

proposed framework; Section 4 discusses the comprehensive 

validation of five different circuits; and finally, Section 5 

concludes with a summary and future work. 

2. MATERIALS AND METHODS 

In this section, we present a systematic approach to device-

assisted TDD by integrating advanced modelling techniques 

and an optimisation algorithm. The SLRC circuit is 

introduced to analyse the impedance characteristics of 

different skin layers during drug delivery. The PBNP model 

enables precise calculation of electrotransport flux and drug 

concentrations across various skin layers by improving the 

predictive performance of drug delivery systems. The overall 

workflow of the proposed methodology is shown in Fig. 1. 

 

Fig. 1.  Sequence of steps adopted in this research for drug delivery. 
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A. Series connection of multiple parallel circuit models 

In this work, the SLRC circuit is introduced with a series 

connection of multiple parallel circuits. The SLRC circuit 

combines the Montage, CPE, and Tregear models for five 

different skin layers, as shown in Fig. 2. These models were 

developed based on physiological stratification and the 

chemical and biological characteristics of the skin. A series 

of skin impedance models was examined in this research. The 

flowchart of the proposed work for predicting drug 

penetration across various skin layers is shown in Fig. 3. 

 

Fig. 2.  Spine–leaf resistor–capacitor circuit. 

 

Fig. 3.  Flowchart of the proposed model for predicting drug pe-

netration across various skin layers. 

Montague model 

The Montague model [21] is the simplest and most 

common model for skin stratification based on physiological 

factors. In this model, the properties of the resistor and 

capacitor for the stratum corneum (SC) are represented in 

parallel by a resistive 𝑅sc and a dielectric capacitance 𝐶sc. 

Skin resistance is represented by a small resistance 𝑅𝑠, which 

is connected in series with this parallel combination. The 

impedance function associated with this model is given by, 
 

𝐺(𝑆) =
𝑅sc + 𝑅s + 𝑠𝑅sc𝑅s𝐶sc

𝑠𝑅sc𝑅s𝐶sc + 1
 (3) 

 

where 𝑅sc represents the resistance of the SC, indicating the 

outermost skin layer’s resistance to electric current. 𝑅s de-

notes the small resistance of the skin's deeper layers, 

connected in series. 𝐶sc represents the dielectric capacitance 

of the SC, modelling the SC’s ability to store electrical energy 

as a dielectric material. Here, 𝑠 is the Laplace transform 

variable associated with frequency in the impedance function, 

describing the dynamic behaviour of the system. 

Constant phase element (CPE) model 

The CPE model [22] is widely used in electrical impedance 

analysis to describe non-ideal capacitive behaviour. The 

Montague model uses a CPE instead of an ideal capacitor. 

The impedance of the CPE is represented as 𝑍cpe. In a quasi-

capacitor, the impedance 𝐴 represents the impedance. In 

terms of fractal dimensions, the most significant dimension 

on the surface of the skin is α. A CPE acts as a pure capacitor, 

resistor, and inductor at 𝛼 =  1, 0, and − 1, respectively. 

A fractional CPE forms the basis for this model, which is 

called the CPE-based model for capturing the genetic 

properties of skin. Equation (3) represents the relevant 

impedance function for the CPE model: 
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𝐺(𝑆) = 𝑅𝑠 +
𝑅ED

1 + 𝑅ED𝐴𝑠α
 (4) 

 

where  𝑅𝐸𝐷 represents the resistance of the epidermis, and 𝛼 

is a fractional exponent  (0 ≤  𝛼 ≤  1) indicating the degree 

of non-ideal capacitive behaviour, with  𝛼 =  1 for ideal and 

lower values for more distributed responses. 

Tregear model 

The Montague model [23] comprises three fixed 

component values. Skin impedance values change as we 

move deeper into the skin layers from the surface. In these 

situations, the Montague model does not account for changes 

in impedance due to the physiological stratification of the 

skin. Because of this limitation, the Montague model is prone 

to flaws and errors. In this study, Tregear and colleagues 

found that tape stripping reduces the impedance value with 

each strip. Tregear constructed several parallel RC circuits in 

series to illustrate the varying resistance and capacitance 

values across different skin layers.  

The Tregear model consists of three levels (each with 

resistance (𝑅T) and capacitance (𝐶T)). As levels increase, 

deeper layers of skin are considered. Level 3 of the Tregear 

model is the highest level that can be considered. The model 

therefore accounts for the skin's physiological stratification at 

a very deep level. In (5) and (6), we present the corresponding 

impedance functions for Level 1 and Level 2 of the Tregear 

model. 

 

𝐺(𝑆) =
𝑅T

𝑠𝑅T𝐶T + 1
+

𝑅T

𝑠𝑅T𝐶T + 2
+

𝑅T

𝑠𝑅T𝐶T + 5
 (5) 

  

𝐺(𝑆) =
𝑅T

𝑠𝑅T𝐶T + 1
+

𝑅T

𝑠𝑅T𝐶T + 2
+

𝑅T

𝑠𝑅T𝐶T + 5
  

               + 
𝑅T

𝑠𝑅T𝐶T + 10
+

𝑅T

𝑠𝑅T𝐶T + 20
+

𝑅T

𝑠𝑅T𝐶T + 50
  (6) 

Hybrid model 

The proposed Spine leaf model represents both the biolo-

gical characteristics and physiological stratification of skin. 

A parallel combination of a resistor (𝑅sc) and CPE (𝑅ED) 

represents the combined impedance of the SC and epidermis. 

Three parallel combinations of different resistors (𝑅T) and 

a capacitor (𝐶T) represents the various layers of the dermis, 

hypodermis, and depth layers. The resistance of the deepest 

layer is denoted by a low-value resistor, 𝑅depth. The values 

are (𝑅T = 𝑅SC) 𝛺, (𝐶T = 𝐴), and 𝑅depth = 200 𝛺. Equation 

(7) gives the equivalent impedance function for the hybrid 

model. 

 

  𝐺(𝑆) =
𝑅SC

𝑠𝑅SC𝐶SC + 1
+

𝑅ED

𝑅ED𝐴𝑠α + 1
+

𝑅T

𝑠𝑅T𝐶T + 10
 

   +
𝑅T

𝑠𝑅T𝐶T + 20
+  

𝑅T

𝑠𝑅T𝐶T + 50
+

𝑅T

𝑠𝑅T𝐶T + 100
 

   +
𝑅T

𝑠𝑅T𝐶T + 200
  +

𝑅T

𝑠𝑅T𝐶T + 500
+ 𝑅depth        (7) 

In the SLRC circuit, the capacitive component primarily 

represents the restriction of ion transport across the SC layer. 

For model fitting, resistance values are set between 0.1 and 

100 kΩ and capacitance values between 0.01 and 10 nF. In 

MATLAB, the Levenberg–Marquardt algorithm was confi-

gured with 200 iterations and 1e-6 convergence tolerance as 

one of the solver settings. To further optimise the circuit 

parameters, the EOA was used with a population size and 

maximum number of iterations selected via grid search for 

optimal performance.  

B. Ebola search Optimisation Algorithm 

In this section, the parameters of the proposed SLRC 

circuit are obtained from the impedance dataset using a non-

linear least squares fitting in MATLAB. The EOA [24] is 

applied to optimise the simulated parameters to fit into the 

collected dataset, as shown in Fig. 4. EOA is a nature-inspired 

metaheuristic optimisation technique modelled after the 

propagation dynamics of the Ebola virus. In the context of the 

proposed SLRC circuit, EOA is used to optimise simulated 

circuit parameters (such as resistance R and capacitance C) to 

fit experimental data or a collected dataset. The EOA 

addresses the limited optimisation problem through the 

following steps: 

• Evaluate the effectiveness of iontophoresis by analysing 

the current density, drug concentration, and duration 

influence on skin permeability and drug absorption. 

• If a parameter set does not meet safety thresholds or if 

skin penetration is less than ideal, discard it. 

• Combine and modify parameters from the sets that work 

well, ensuring a balance between safety and efficacy, to 

improve iontophoresis outcomes. 

• Repeat the first step and adjust the settings until the ideal 

conditions or the convergence criteria (such as negligi-

ble performance improvement or a safety issue) are met. 

The formula for the skin impedance of the SLRC circuit is 

derived as 

 

𝑍 = √𝑅2 + (1
𝜔𝐶⁄ )2 (8) 

 

where 𝑍 represents the skin impedance of the SLRC circuit 

and 𝜔 is the angular frequency of the circuit. Substitute 

𝜔 = 2π𝑓 into the above equation (8) 

 

𝑍 = √𝑅2 + (1
2π𝑓𝐶⁄ )2 (9) 

 

Square both sides to eliminate the square root 

 

𝑍2 = 𝑅2 + (1
2π𝑓𝐶⁄ )2 (10) 

 

Invert the equation (10) 
 

2π𝑓𝐶 = 1
√𝑍2 − 𝑅2⁄  (11) 

 

𝑓 = 1
2π𝐶√𝑍2 − 𝑅2⁄  

(12) 
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This EOA determines the parameter values with the lowest 
𝑓 − 𝑣𝑎𝑙𝑢𝑒. The EOA parameters initialise a population size 
of 50, and an iteration count of 200 is selected based on grid 
search tuning for biomedical optimisation tasks. The initial 
grid search tuning was performed by varying the population 
size (30-70) and iterations (100-300) to evaluate the conver-
gence speed and error minimisation. The selected configu-
ration (i.e., size = 50, iteration = 200) provided the optimal 
trade-off between prediction accuracy and a low error rate. 
As a result, this setup ensures consistent efficiency while 
maintaining modest processing requirements for drug deli-
very studies based on simulation. 

 

Fig. 4.  Flowchart of the Ebola Optimisation Algorithm for SLRC 
circuit parameter normalisation. 

In the EOA, parameter values are passed to an objective 
function, which aims to produce a result indicating the 
parameters are "good". Fitting datasets 𝑍fit are created based 
on the parameters that provide the best fit for a given model. 
The mean absolute percentage error (MAPE) measures the 
statistical predictive performance of the proposed method. It 
usually conveys accuracy through (13): 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

(𝑍fit − 𝐴data)

𝐴data

|

𝑛

𝑖=1

 (13) 

 

where 𝑛 is the number of fitting points, 𝑍fit is the predicted 

value from the circuit, and 𝐴data is the actual observed value. 
A model with a low MAPE value produces the best results. 
Calculating fitness accuracy involves calculating the 
coefficient of determination (𝑅2). This provides insight into 

the goodness of fit of a model in statistics, and it measures the 
accuracy of regression predictions by comparing them to the 
actual data points. 

C. Poisson–Boltzmann–Nernst–Planck model 

The PBNP model [25] extends the PNP model by 

incorporating Boltzmann distributions to account for 

equilibrium ion concentrations under potential fields. The 

PBNP model is formulated as a hybrid approach to efficiently 

simulate ion transport in multi-layered skin under ionto-

phoretic stimulation. Specifically, this hybrid approach 

integrates the NP equation for target ion-species and the 

Boltzmann distribution for non-target ions. Target ions are 

assumed to undergo active electro-diffusion, while non-target 

ions are assumed to be in quasi-equilibrium, reducing 

computational complexity without compromising accuracy. 

Boundary conditions include a fixed potential (Dirichlet) at 

the skin surface and zero-ion flux (Neumann) at the deepest 

boundary. Continuity conditions are enforced for ion flux and 

potential at layer interfaces. 

Multi-ionic systems such as cutaneous medication 

administration, particularly benefit from this method because 

they involve interactions between ions and an electric field. 

The Boltzmann distribution for ion concentration is given by: 

 

𝑛𝜏 = 𝑛𝜏
0 exp (−

𝑧𝜏𝐹𝜑

𝑅𝑇
) (14) 

 

The derived flux equation for the PBNP model is: 

 

𝐽𝜏 =
𝐷𝜏𝑧𝜏𝐹𝑛𝜏

 𝑅𝑇
𝐼

d𝑧

d𝑥
 (15) 

 

This model provides a comprehensive understanding of 

how ions and medications permeate through skin layers under 

an electric field, aiding the advancement of iontophoretic 

drug delivery techniques. As a result, it is possible to assess 

the impedance of the skin at various layers. 

3. EXPERIMENTAL RESULTS 

In this section, the mathematical solutions of the PBNP 

model were simulated using MATLAB 2018a to evaluate ion 

transport and drug diffusion across stratified skin layers. The 

simulation results presented in this research are supported by 

in-silico validation using established skin impedance datasets 

and numerical modelling techniques. The proposed model 

was evaluated across 12 anatomical regions. The ionto-

phoresis of Naltrexone HCl was simulated using drug and 

concentration data. Its concentration in dissociated saturated 

solution at 36 °C (309 K) and its diffusion coefficient are 

83.76 × 102 mm2/s, respectively, after which a dispersed 

saturated solution of the medication is released from the 

reservoir. According to our measurements, the concentration 

of the drug solution was 31.252 g/mm3. As impedance data 

were available, iontophoretic drug administration at the 12 

different sites of the human body was considered in this 

investigation. Skin layer thicknesses were 40 mm for SC, 

164 mm for the epidermis, 5888 mm for the dermis, 191 mm 

for the hypodermis, and 2845 mm for depth. The boundaries 

between the layers were 0, 0.040, 0.164, 6.052, 7.965, and 

10 mm, respectively. It is possible to simulate drug diffusion 

and flux measurements accurately by modelling parameters 

using impedance data at different kHz.  
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(a) 

 
(b) 

Fig. 5.  Visual representation of (a) Anatomical sites on the human 

body considered for iontophoretic drug delivery simulation. (b) 

Simulated drug concentration profiles across skin depths using the 

proposed model. 

Fig. 5 illustrates the process of TDD using iontophoresis at 

various skin depths in different sites of the human body. 

PBNP regulates iontophoretic flux, involving passive 

diffusion and electrotransport. Drug molecules are delivered 

through stratified skin layers, with counter electrodes 

ensuring current flow. Drug concentration diminishes with 

increasing depth, highlighting the importance of electrical 

control for targeted delivery. 

Table 1 presents the impedance values measured across 

different skin layers (SC, Epidermis, Dermis, Hypodermis, 

and Depth) for five models: Montague, CPE, Tregear-1, 

Tregear-2, and Hybrid. Impedance is highest in the SC and 

decreases progressively through the deeper layers. The 

Tregear model shows significant impedance variability 

across layers.  

Table 2 shows electrotransport flux values for each skin 

layer across the same five models. The flux values are highest 

in the SC and Epidermis, reflecting their greater transport 

potential. The deeper layers, such as the Dermis and 

Hypodermis, show reduced flux due to resistance. Depth 

exhibits negligible or zero flux in certain models. 

Table 3 provides drug concentrations in molar units, 

highlighting the distribution across skin layers for the models. 

The SC and Epidermis maintain the highest molar con-

centrations, consistent with their greater retention capacity. 

Deeper layers display lower concentrations, while the tissue 

layer holds the least. The proposed model achieves a more 

balanced drug distribution across layers. 

 

Table 1.  Impedance [Ω cm2] across different skin layers for all models. 

Layer Montague CPE Tregear-1 Tregear-2 SLRC (proposed) 

SC 8452.34 8339.12 8210.89 6543.78 6520.43 

Epidermis 6295.12 6203.98 6289.67 5082.34 4752.89 

Dermis 783.12 710.45 735.56 850.92 903.78 

Hypodermis 365.45 285.67 299.45 522.34 610.12 

Depth 8.21 0.12 0.00 276.45 371.54 

Table 2.  Electrotransport flux [μg/mm2s] across different skin layers for all models. 

Layer Montague CPE Tregear-1 Tregear-2 SLRC (proposed) 

SC 167.12 162.34 165.45 139.87 126.78 

Epidermis 125.87 122.76 123.56 103.45   95.34 

Dermis 17.12 15.78   16.45   18.12   17.89 

Hypodermis   7.12   6.45     6.89   11.34   13.56 

Depth   0.34   0.00     0.12     5.87     7.34 

Table 3. Total drug concentration [mole/m3] across different skin layers for all models. 

Layer Montague CPE Tregear-1 Tregear-2 SLRC (proposed) 

SC 390.67 387.12 392.34 418.12 378.56 

Epidermis 328.45 324.67 326.12 275.67 260.78 

Dermis 7.12 6.89 7.34 6.12 7.45 

Hypodermis 3.89 2.87 3.23 4.45 5.34 

Depth 0.65 0.00 0.12 1.78 2.56 
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In Fig. 6, the Montague model, computational fluid 

dynamics (CFD)-based model, Tregear 1&2 models, and the 

Proposed model are among the models used to analyse 

variations in parameters associated with drug delivery 

through skin depth. In Fig. 6(a), skin impedance decreases 

with increasing skin depth, which is crucial for assessing drug 

penetration. Fig. 6(b) shows a decrease in electrotransport 

flux across deeper epidermal layers as epidermal depth 

increases. Fig. 6(c) shows that medication concentration, as 

determined by the electrotransport mechanism, decreases 

with greater skin penetration. Due to their consistent trends, 

these models provide reliable forecasting of drug delivery 

performance.  

 
(a) 

 
(b) 

 
(c) 

Fig. 6  (a) Skin impedance; (b) Electrotransport flux; and (c) Drug 

concentration derived from the electrotransport component with 

variation in skin depth. 

Table 4 presents the total drug concentration (mole/m³) 
across various skin layers at different current densities 
(I, mA/cm²). As current density increases, a significant rise in 
drug concentration is observed across all layers. The SC 
shows the highest concentration due to its proximity to the 
drug source, while the tissue shows the lowest. This trend 
highlights the direct relationship between current density and 
drug delivery efficiency during iontophoretic administration. 

Table 4.  Total drug concentration [mole/m³] with variations in 
current density (I, mA/cm²). 

I [mA/cm²]    I = 0.1    I = 0.2    I = 0.4    I = 0.5    I = 1.0 

SC 140.12 205.36 329.85 392.47 710.29 
Epidermis 89.34 132.19 218.76 261.42 480.14 

Dermis 2.32 3.76 6.45 7.84 15.08 

Hypodermis 1.63 2.42 3.89 4.51 8.12 
Depth 1.24 1.62 2.36 2.72 4.51 

 

Fig. 7 shows the distribution of drug concentration 
(μg/mm³) across different skin depths (0-10 mm) under 
varying current densities (0.1, 0.2, 0.4, 0.5, and 1.0 mA/cm²). 
Higher current densities result in deeper drug penetration but 
lower concentrations at the surface. The colour gradient 
indicates drug concentration, with yellow representing higher 
values and purple representing lower values. Drug con-
centration decreases as skin depth increases for all current 
densities. This highlights the effect of current density on drug 
delivery efficiency and depth of penetration. 

 

Fig. 7.  Total drug concentration [μg/mm3] at different skin layers in 
current density [mA/cm2]. 

 

Fig. 8.  Analysis of the proposed model based on MAPE and 𝑅2 
values across various body regions. 

Fig. 8 shows the prediction performance of the proposed 
model across 12 anatomical areas, based on MAPE and 𝑅2. 

According to the table, the palm region has the lowest MAPE 
(0.134) and the highest 𝑅2 (0.981). Each location shows high 

𝑅2 values (0.94), indicating a superior model fit across 
a range of skin types and anatomical variations. Based on 
these results, the proposed model is versatile and robust 
enough to optimise medicine administration in specific 
regions for simulating TDD. 
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Fig. 9.  Performance analysis of the proposed model based on MAPE 

vs Frequency for TDD. 

Fig. 9 shows the impact of current frequency on prediction 

accuracy using MAPE as the evaluation metric. Among the 

tested  frequencies,  4 × 10³ Hz  produced  the  lowest MAPE 

(0.234 %), indicating optimal conditions for drug penetration. 

The reported MAPE values at 2 × 10³ Hz and 8 × 10³ Hz were 

higher, indicating inferior impedance behaviour. This de-

monstrates the importance of frequency tuning for effective 

transdermal drug delivery. 

Table 5 compares the mean and standard deviation (SD) of 

drug delivery efficiency across different body parts at 

frequencies of 2 × 10³ Hz, 4 × 10³ Hz, and 8 × 10³ Hz. The 

values show that 4 × 10³ Hz consistently yields lower mean 

values than the other frequencies, indicating optimal 

conditions for drug delivery. The SDs for 4 × 10³ Hz suggest 

better control and homogeneity of delivery. Compared to 

2 × 10³ Hz and 8 × 10³ Hz, higher mean values indicate 

greater resistance and less effective drug penetration. The SD 

for 4 × 10³ Hz is moderate, ensuring controlled delivery with 

minimal variability compared to other frequencies. All body 

components exhibit the same pattern, highlighting the higher 

efficiency of 4 × 10³ Hz. This demonstrates that 4 × 10³ Hz is 

the most effective frequency for skin medication delivery 

applications.  

Table 5.  Mean and SD [Ω] of impedance for various body parts. 

 2 × 10³ Hz  4 × 10³ Hz  8 × 10³ Hz  

Body parts Mean   SD Mean   SD Mean   SD 

Face 5.60 × 10³ 1840.12 4.20 × 10³ 1450.25 6.80 × 10³ 2115.37 

Neck 1.02 × 10⁴ 2155.20 7.85 × 10³ 1780.55 1.12 × 10⁴ 2401.28 

Shoulder 1.10 × 10⁴ 2250.30 8.20 × 10³ 1720.45 1.18 × 10⁴ 2435.12 

Chest 1.25 × 10⁴ 2445.41 9.05 × 10³ 1865.33 1.34 × 10⁴ 2560.11 

Belly 1.30 × 10⁴ 2235.75 9.50 × 10³ 1900.25 1.38 × 10⁴ 2710.32 

Hip 1.18 × 10⁴ 2145.88 8.70 × 10³ 1805.40 1.26 × 10⁴ 2605.45 

Back 1.12 × 10⁴ 2140.82 8.50 × 10³ 1775.55 1.22 × 10⁴ 2525.87 

Ventral 1.25 × 10⁴ 2195.65 9.20 × 10³ 1825.75 1.32 × 10⁴ 2650.20 

Dorsal 1.50 × 10⁴ 2280.34 1.05 × 10⁴ 1950.45 1.60 × 10⁴ 2755.30 

Palm 1.75 × 10⁴ 2370.12 1.20 × 10⁴ 2050.50 1.85 × 10⁴ 2855.20 

Knee 1.45 × 10⁴ 2200.55 1.00 × 10⁴ 1850.15 1.55 × 10⁴ 2705.75 

Ankle 1.60 × 10⁴ 2335.22 1.12 × 10⁴ 1955.40 1.70 × 10⁴ 2800.35 
 

 
                                                            (a)                                                                                                     (b) 

Fig. 10.  MAPE value comparison of different models for different body parts (a) Upper body regions and (b) Lower body regions. 

Fig. 10 presents a comparative analysis of the proposed 

model with the Montague model, CPE model, Tregear L1 

model, and Tregear L2 model based on MAPE values. MAPE 

values for the face, neck, chest, shoulder, back, and belly are 

shown in Fig.10(a), while ventral, hip, dorsal, palm, knee, and 

ankle MAPE trends are shown in Fig. 10(b). The lower MAPE  

across all body sections indicates superior performance of the 
proposed model. The CPE model also performs well, 
especially when it comes to minimising errors. The Montague 
models show a higher error rate, while the Tregear models 
provide moderate MAPE values. These patterns demonstrate 
that the proposed model is effective in optimising drug 
distribution to different parts of the body. 
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Table 6.  Comparison analysis of the proposed SLRC circuit with existing models across various body parts.

 MAPE values  𝑅sc  𝐶𝑇 𝑆𝐹 𝑅2 

Body parts Montague  CPE  Tregear-1  Tregear-2 Proposed Proposed Proposed Proposed Proposed 

Face 0.613 0.531 0.665 0.582 0.483 72.476 0.495 1.000 0.945 

Neck 0.561 0.342 0.585 0.506 0.309 17.465 0.496 0.924 0.961 

Shoulder 0.518 0.320 0.578 0.501 0.284 13.584 0.451 0.870 0.964 

Chest 0.501 0.320 0.564 0.507 0.225 10.027 0.447 0.884 0.972 

Belly 0.505 0.256 0.515 0.519 0.250 45.268 0.312 0.998 0.968 

Hip 0.520 0.280 0.528 0.498 0.261 38.923 0.315 0.962 0.965 

Back 0.505 0.284 0.546 0.415 0.250 15.385 0.286 0.984 0.966 

Ventral 0.494 0.343 0.556 0.506 0.268 23.948 0.471 0.908 0.962 

Dorsal 0.475 0.272 0.495 0.512 0.283 80.638 0.352 1.000 0.958 

Palm 0.494 0.211 0.472 0.418 0.134 18.225 0.441 0.844 0.981 

Knee 0.463 0.297 0.424 0.495 0.257 55.687 0.346 0.975 0.969 

Ankle 0.505 0.266 0.532 0.483 0.220 40.315 0.417 0.903 0.974 

 

 

Table 6 presents a performance comparison of the pro-

posed SLRC circuit with existing models across various body 

parts based on different parameters. These parameters include 

MAPE, skin resistance (𝑅sc in kΩ), capacitance (𝐶𝑇) in nF), 

a scaling factor (𝑆𝐹), and the highest coefficient of deter-

mination (𝑅2). For the palm, the proposed SLRC circuit has 

a MAPE value of 0.134, where lower values indicate higher 

prediction accuracy. Skin resistance (𝑅sc) varies between 

body parts, with the dorsal region (80.636 kΩ) showing the 

highest value and the chest (10.027 kΩ) the lowest. In the 

neck, capacitance (𝐶𝑇) is comparatively constant at 0.499 nF, 

while it is as low as 0.286 nF in the back. According to 

Table 7, the SF values across all body parts indicate 

consistent performance of the proposed model in predicting 

skin characteristics, providing accurate guidance for opti-

mising transdermal drug delivery strategies. The palm region 

shows the lowest MAPE (0.134) and the highest 𝑅2 (0.981). 

Each location shows high 𝑅2 values (0.94), indicating 

superior model fit across a range of skin types and anatomical 

variations. Based on these results, the proposed model is 

versatile and robust enough to optimise medicine 

administration in specific regions for simulating TDD. 

Table 7.  Comparison of different optimisation algorithms 

Algorithm MAPE  R²  Convergence time [s] 

BO 0.307 0.961 18.6 

PSO 0.276 0.948 14.1 

GA 0.265 0.954 12.5 

EOA (ours) 0.234 0.982   9.3 

Table 7 compares existing algorithms such as Bayesian 

optimisation (BO), particle swarm optimisation (PSO), and 

genetic algorithm (GA) with the proposed EOA. The EOA 

achieved the lowest MAPE and highest R², indicating superior 

accuracy in modelling skin impedance and drug flux. The 

existing BO algorithm was reliable but slower and less 

effective in highly non-convex spaces such as stratified skin 

models. Moreover, the PSO algorithm offered faster 

convergence but often failed in local minima due to its basic 

velocity-position update rule. The GA provided a good 

balance of exploration and exploitation, yet showed slower 

convergence compared to EOA. This analysis demonstrates 

that the proposed EOA offers the best trade-off between 

speed, accuracy, and robustness, making it ideal for complex 

biomedical optimisation tasks. 

Table 8 presents a comparison of state-of-the-art models 

with the proposed model in terms of efficiency and 

computational criteria. The proposed model achieves the 

highest accuracy (R² = 0.96) and the lowest error 

(MAPE = 0.134), while maintaining a lower computational 

complexity of 𝑂(𝑛 log 𝑛). The use of EOA further enhances 

reliability by optimising circuit parameters and minimising 

parameter uncertainty across different body regions. 

Furthermore, the proposed model significantly reduces 

training and inference times compared to other models, which 

range from 180 to 300 s and 50 to 70 ms, respectively. 

Despite its complexity, the proposed model balances speed, 

accuracy, and efficiency for TDD. As a result, it is clearly 

shown that the proposed model is superior to traditional 

methods, making it ideal for real-time TDD applications. 

 

Table 8.  Comparison evaluation: State-of-the-art models vs the Proposed model. 

Reference 𝑅2 MAPE Complexity Training time [s] Inference time [ms] 

[28] 0.81 0.492 𝑂(𝑛²) 180 50 

[29] 0.84 0.478 𝑂(𝑛²) 240 60 

[6] 0.76 0.529 𝑂(𝑛²) 300 70 

[8] 0.79 0.507 𝑂(𝑛² log 𝑛) 220 65 

Proposed  0.96 0.134 𝑂(𝑛 log 𝑛)   95  20 
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4. DISCUSSION 

The simulation findings presented in the results section are 
supported by in-silico validation using established skin 
impedance datasets and numerical modelling techniques. 
Various anatomical and biophysical characteristics of the skin 
may influence prediction errors between regions, such as the 
palm and forearm. Due to its thick SC and high concentration 
of sweat glands, the palm retains higher drug concentrations, 
resulting in a lower MAPE value. In contrast, the forearm, 
with its thinner skin, lower ionic concentrations, and greater 
moisture fluctuation, exhibits higher computational errors 
and less predictable impedance behaviour. These variations 
have a direct impact on drug diffusion and ion transport under 
iontophoretic stimulation. Additionally, EOA effectively 
reduces complexity while improving overall prediction 
accuracy by optimising region-specific circuit characteristics. 
Therefore, skin-specific features should be considered when 
optimising transdermal medication delivery techniques.  

From this analysis, the proposed model is suitable for TDD 
applications due to its many benefits, including a low error 

rate (MAPE = 0.134), high prediction accuracy (𝑅2 = 0.96), 

and low computational complexity (𝑂(𝑛 𝑙𝑜𝑔 𝑛)). It 
efficiently optimises impedance parameters across different 
body parts and models skin stratification. The key advantage 
of the proposed method lies in its integration of multi-layer 
impedance modelling, ion flux simulation, and optimisation.  
However, its improved performance is countered by a slightly 
higher computational complexity. Moreover, the perfor-
mance of the proposed model may be affected by variations 
in skin conditions, moisture, and temperature. Simulated data 
cannot accurately represent clinical circumstances in the 
current evaluation. To address these limitations, future work 
will focus on validating the model using clinical data from 
diverse populations and implementing it on embedded 
systems for real-time TDD applications. 

5. CONCLUSION  

This research presents a novel systematic approach to 
device-assisted TDD using an advanced skin impedance 
modelling method and optimisation techniques. The key 
original contributions and distinctions from previous work 
are summarised below: 

• The SLRC model was developed by combining the 
Montague, CPE, and Tregear models to simulate multi-
layer skin impedance more accurately. 

• Compared to traditional models, the PBNP model 
provides accurate estimates of drug concentration and 
electrotransport flux across stratified skin layers with 
electric stimulation. 

• EOA was used for the first time in TDD modelling to 
optimise impedance parameters, achieving lower 
computational error and faster convergence than the 
existing methods such as GA, PSO, and BO. 

• The proposed model achieves the lowest MAPE (0.134) 

and highest 𝑅2 (0.96) compared to other existing 
models, demonstrating its robustness across various 
body regions. 

• The results indicate that a frequency of 4 × 10³ Hz yields 
the best impedance and drug penetration, highlighting 
the importance of frequency and current density in 
increasing drug levels. 

Based on the experimental findings, the proposed model 

provides a robust and efficient framework for improving 

TDD systems, with promising implications for clinical 

applications. Future work includes in-vitro experiments using 

excised skin samples and in-vivo studies with biomedical 

research laboratories to validate and refine the model under 

physiological conditions. Additionally, we plan to explore 

other non-invasive enhancement techniques, such as 

ultrasound or microneedles with iontophoresis, to further 

optimise drug delivery efficiency and broaden the scope of 

TDD applications. 
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