MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 6, 347-357

S sciendo

MEASUREMENT SCIENCE REVIEW &

Journal homepage: https://content.sciendo.com

ISSN 1335-8871

Skin Impedance Analysis for Drug Delivery:
Integration of Poisson—Boltzmann—Nernst-Planck Model and
Ebola Optimisation Algorithm

Maceal Tony L'*| Shaji R.S?

!Department of Electronics and Communication Engineering, St. Xavier’s Catholic College of Engineering, Nagercoil,
India, maceal@sxcce.edu.in

’Department of Computer Science and Engineering, St. Xavier’s Catholic College of Engineering, Nagercoil, India,
shaji@sxcce.edu.in

Abstract: Transdermal drug delivery (TDD) is a non-invasive approach for administering therapeutic medications through the skin. This
research proposes a spine—leaf resistor—capacitor (SLRC) circuit to analyse the impedance characteristics of different skin layers during drug
delivery. To optimise the SLRC circuit parameters, the Ebola Optimisation Algorithm (EOA) minimises errors and improves computational
efficiency. The Poisson—Boltzmann—Nernst—Planck (PBNP) model is used to calculate input parameters such as ion concentrations and
electrotransport flux, to derive the drug concentration based on input parameters. A MATLAB simulator calculates drug penetration across
stratified skin regions. According to the SLRC results, the Montague, constant phase element (CPE), and Tregear models performed better
in predicting drug penetration and electrotransport flux than more conventional models. Compared to the traditional Montague and Tregear
models, the EOA improved performance by reducing the mean absolute percentage error (MAPE) to as low as 0.134. The proposed model
achieved an R? value of 0.98 when validated against the impedance datasets, confirming high prediction accuracy. Furthermore, simulated
results revealed that an optimal frequency of 4 x 10° Hz provides the best impedance and drug penetration, demonstrating the importance of
frequency and current density in increasing drug levels. The proposed model enhances the precision and efficiency of TDD, offering
significant potential for clinical and pharmaceutical applications.
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drugs [12], [13]. The skin contains keratinised cells, sweat
glands, hair follicles, and pores [ 14]. Skin impedance as a key
component of bioimpedance has been used to analyse various
data about underlying tissues, including fat deposits, moisture
content, and other relevant factors [15].

The Nernst—Planck (NP) model [16] describes the
transport of ions under both concentration gradients and
electric fields. It considers both diffusion (due to concen-
tration gradients) and migration (due to the electric field).

1. INTRODUCTION

In medical history, traditional drug administration methods
include oral ingestion and hypodermic injections [1].
Transdermal drug delivery (TDD) is a technique for
delivering medications through the skin [2], [3]. TDD is an
innovative and non-invasive method of administering
therapeutic agents through the skin to achieve systemic
effects [4], [S]. TDD systems, such as patches, gels, and
creams, offer significant benefits over traditional delivery
techniques, including improved patient compliance, con-
trolled drug release, and fewer adverse effects [6], [7]. TDD J. = —D,Vn, —
continues to evolve with advancements in nanotechnology, ! T RT
microneedles, and permeation enhancers, broadening its
potential applications in modern medicine [8].

Iontophoresis is a non-invasive technique used to transport
ions and charged molecules across skin membranes using a

z.F

n, Vo (nH

where J, represents the ion flux, D; is the diffusion coefficient
of the ion species, 7 is a general index for ion species used to
define ion-specific properties such as diffusion and charge,

low-level electrical current [9], [10]. Iontophoresis-based
sweat testing for diseases such as cystic fibrosis is also used
in research and diagnostics [11]. The intricate features of hu-
man skin must be considered when administering transdermal
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n, is the concentration of the ion species, z, is the valence of
7, F' is Faraday's constant, R is the universal gas constant, 7" is
temperature, ¢ is the electric potential, and V is the gradient
operator.
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The Poisson—Nernst—Planck (PNP) model [17] extends the
NP model by incorporating the Poisson equation to account
for the electrostatic potential distribution within the system,
which depends on the charge distribution. The Poisson
equation for the electrostatic potential ¢ is given by,

Vg == @)

where p is the charge density and € is the permittivity of the
medium. The PNP model integrates the Poisson equation to
solve for the electrostatic potential ¢, which is influenced by
the ion distribution. To address this challenge, the PNP model
can be reformulated to reduce computational overhead by
representing certain ion species differently. In this alternative
model, let n denote the total number of ion species. The target
ion species are denoted as n,(«= 1,2,3, ... Nyp), where Nyp
is the number of ions treated using the NP equation. The
remaining ions, denoted ng(f = Nyp + 1,...,N.), are mo-
delled using the Boltzmann distribution. Here, n, represents
the number of target ion species modelled using the Nernst—
Planck equations, and ng represents the number of non-target
ion species modelled using the Boltzmann distribution. The
index o denotes the index for target ions modelled via the NP
equations, while f§ denotes the index for non-target ions
modelled via the Boltzmann distribution.

Several researchers have proposed electrically equivalent
models of the skin to account for its dynamic physiological
stratification. The most commonly used techniques, such as
the Tregear model [ 18] and the Montague model [19], classify
the skin as a resistor—capacitor (RC) layered system. The
transfer functions of three electrical models of human skin
(Montague, Tregear, and Lykken models) were analysed in
terms of physical stratification [20]. A nanomaterial-based
TDD platform using a nucleic acid framework [26] was
developed for enhanced photodamage treatment. The results
demonstrated high drug-loading efficiency and controlled
release via UV activation. Optical coherence tomography
(OCT) and fluorescence imaging [27] were employed to
visualise microneedle-assisted drug diffusion, enabling real-
time tracking of drug delivery depth and efficiency with high
spatial resolution. A wearable device was designed [28] for
continuous skin impedance spectroscopy under real-time
conditions, focusing on conductivity changes over time.
Moreover, the impedance changes in pig skin were
investigated using tape stripping [29] to remove layers and
measure electrical responses. However, experimental
validation of impedance variability across skin layers lacks
computational optimisation and electrotransport modelling.
This research introduces a systematic approach to device-
assisted transdermal drug delivery by integrating physical
modelling and mathematical frameworks to predict drug
concentration across skin layers. The key contributions of the
proposed work are summarised as follows:

¢ A novel spine—leaf resistor—capacitor (SLRC) circuit is

introduced, combining the Montague, constant phase
element (CPE), and Tregear models to more accurately
simulate skin impedance across various stratified layers.

e The PBNP model is incorporated to achieve precise

calculation of ion transport and drug flux under electric
fields, improving the predictive modelling of TDD.

e The Ebola Optimisation Algorithm (EOA) is used to
optimise the SLRC circuit parameters, significantly
reducing the computational error and improving
prediction accuracy.

e The proposed model is validated across 12 different
human body regions, revealing the impact of biophysical
skin properties on drug delivery efficiency, which
provides valuable insights for clinical settings.

The rest of the paper is organised as follows: Section 2
provides a comprehensive description of the proposed
framework for analysing drug penetration across various skin
layers; Section 3 presents the results and comparison of the
proposed framework; Section 4 discusses the comprehensive
validation of five different circuits; and finally, Section 5
concludes with a summary and future work.

2. MATERIALS AND METHODS

In this section, we present a systematic approach to device-
assisted TDD by integrating advanced modelling techniques
and an optimisation algorithm. The SLRC circuit is
introduced to analyse the impedance characteristics of
different skin layers during drug delivery. The PBNP model
enables precise calculation of electrotransport flux and drug
concentrations across various skin layers by improving the
predictive performance of drug delivery systems. The overall
workflow of the proposed methodology is shown in Fig. 1.

Series connection of multiple
parallel circuit model

Montague Model for
stratum comeum
Constant phase element
Model for Epidermis

Site of dug delivery

Tregear Model for Dermis,
Hypodemnis, Depth

l

Evaluate the parameters of the Decompose model into
model component (R, C, a) stratification layer

! }

Calculate the skin i dance of each i ion layer
(Zsc Zepis Zier: Znypor Zdepth)

Measure skin impedance Z on
the site for frequency /'

Ebola optimization
algorithm

Measure the

impedance again

Calculate the impedance gradient and the concentration
caused by Fickian diffusion

l

Enter other parameters of Poisson
Boltzmann equation

Caleulate electro transport flux

Compute drug concentration
from electro transport flux

across variouns skin layers

Poisson Boltzmann
Nemst Planck model
Predict total drug concentration

Fig. 1. Sequence of steps adopted in this research for drug delivery.
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A. Series connection of multiple parallel circuit models

In this work, the SLRC circuit is introduced with a series
connection of multiple parallel circuits. The SLRC circuit
combines the Montage, CPE, and Tregear models for five
different skin layers, as shown in Fig. 2. These models were

SPINE MODEL

developed based on physiological stratification and the
chemical and biological characteristics of the skin. A series
of skin impedance models was examined in this research. The
flowchart of the proposed work for predicting drug
penetration across various skin layers is shown in Fig. 3.
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Fig. 2. Spine-leaf resistor—capacitor circuit.
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Fig. 3. Flowchart of the proposed model for predicting drug pe-
netration across various skin layers.

Montague model

The Montague model [21] is the simplest and most
common model for skin stratification based on physiological
factors. In this model, the properties of the resistor and
capacitor for the stratum corneum (SC) are represented in
parallel by a resistive Rg. and a dielectric capacitance Cj..
Skin resistance is represented by a small resistance R, which
is connected in series with this parallel combination. The
impedance function associated with this model is given by,

Rsc + Rs + SRy R Cyc

G(S) = 3
) SRscRsCse + 1 )

where Ry represents the resistance of the SC, indicating the
outermost skin layer’s resistance to electric current. Rg de-
notes the small resistance of the skin's deeper layers,
connected in series. Cy. represents the dielectric capacitance
of the SC, modelling the SC’s ability to store electrical energy
as a dielectric material. Here, s is the Laplace transform
variable associated with frequency in the impedance function,
describing the dynamic behaviour of the system.

Constant phase element (CPE) model

The CPE model [22] is widely used in electrical impedance
analysis to describe non-ideal capacitive behaviour. The
Montague model uses a CPE instead of an ideal capacitor.
The impedance of the CPE is represented as Z¢pe. In a quasi-
capacitor, the impedance A represents the impedance. In
terms of fractal dimensions, the most significant dimension
on the surface of the skin is a. A CPE acts as a pure capacitor,
resistor, and inductor at « = 1,0,and — 1, respectively.
A fractional CPE forms the basis for this model, which is
called the CPE-based model for capturing the genetic
properties of skin. Equation (3) represents the relevant
impedance function for the CPE model:
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G(S) =Ry + ——=——
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where Rgj represents the resistance of the epidermis, and «
is a fractional exponent (0 < a < 1) indicating the degree
of non-ideal capacitive behaviour, with &« = 1 for ideal and
lower values for more distributed responses.

Tregear model

The Montague model [23] comprises three fixed
component values. Skin impedance values change as we
move deeper into the skin layers from the surface. In these
situations, the Montague model does not account for changes
in impedance due to the physiological stratification of the
skin. Because of this limitation, the Montague model is prone
to flaws and errors. In this study, Tregear and colleagues
found that tape stripping reduces the impedance value with
each strip. Tregear constructed several parallel RC circuits in
series to illustrate the varying resistance and capacitance
values across different skin layers.

The Tregear model consists of three levels (each with
resistance (Rt) and capacitance (Cr)). As levels increase,
deeper layers of skin are considered. Level 3 of the Tregear
model is the highest level that can be considered. The model
therefore accounts for the skin's physiological stratification at
avery deep level. In (5) and (6), we present the corresponding
impedance functions for Level 1 and Level 2 of the Tregear
model.

Ry Ry Ry

G(S) = + + 5
) SRiCr+1  SRCr+2  SRiCr+5 ©)
R R R
) =————t—— g — "
SRiCr+1  SRiCr+2  SRiCr+5
R R R
+ T T T ©)
SRyCr + 10 ' SRyCp + 20 ' SR;Cr + 50
Hybrid model

The proposed Spine leaf model represents both the biolo-
gical characteristics and physiological stratification of skin.
A parallel combination of a resistor (Rs.) and CPE (Rgp)
represents the combined impedance of the SC and epidermis.
Three parallel combinations of different resistors (Rt) and
a capacitor (Ct) represents the various layers of the dermis,
hypodermis, and depth layers. The resistance of the deepest
layer is denoted by a low-value resistor, Rgepen- The values
are (Rt = Rgc) 22, (Cr = A), and Rgepen, = 200 £2. Equation
(7) gives the equivalent impedance function for the hybrid
model.

R R R
G(S) — SC + ED + T
SRSCCSC + 1 REDASlx + 1 SRTCT + 10
+ Ry Ry Ry
SRiCr+20 ' SRpCr+50 ' sRyCp+ 100
—f R +R 7
SR;Cr + 200 ' sRpCp + 500 = depth @

In the SLRC circuit, the capacitive component primarily
represents the restriction of ion transport across the SC layer.
For model fitting, resistance values are set between 0.1 and
100 kQ and capacitance values between 0.01 and 10 nF. In
MATLAB, the Levenberg—Marquardt algorithm was confi-
gured with 200 iterations and 1e¢ convergence tolerance as
one of the solver settings. To further optimise the circuit
parameters, the EOA was used with a population size and
maximum number of iterations selected via grid search for
optimal performance.

B. Ebola search Optimisation Algorithm

In this section, the parameters of the proposed SLRC
circuit are obtained from the impedance dataset using a non-
linear least squares fitting in MATLAB. The EOA [24] is
applied to optimise the simulated parameters to fit into the
collected dataset, as shown in Fig. 4. EOA is a nature-inspired
metaheuristic optimisation technique modelled after the
propagation dynamics of the Ebola virus. In the context of the
proposed SLRC circuit, EOA is used to optimise simulated
circuit parameters (such as resistance R and capacitance C) to
fit experimental data or a collected dataset. The EOA
addresses the limited optimisation problem through the
following steps:

e Evaluate the effectiveness of iontophoresis by analysing
the current density, drug concentration, and duration
influence on skin permeability and drug absorption.

o If a parameter set does not meet safety thresholds or if
skin penetration is less than ideal, discard it.

¢ Combine and modify parameters from the sets that work
well, ensuring a balance between safety and efficacy, to
improve iontophoresis outcomes.

o Repeat the first step and adjust the settings until the ideal
conditions or the convergence criteria (such as negligi-
ble performance improvement or a safety issue) are met.

The formula for the skin impedance of the SLRC circuit is

derived as
Z= /RZ + 1/ 0)? ®)

where Z represents the skin impedance of the SLRC circuit
and w is the angular frequency of the circuit. Substitute
w = 2nf into the above equation (8)

z= [R2+ onfe)? ©)

Square both sides to eliminate the square root

2* =R+ (Y ) (10)
Invert the equation (10)
=Y e an
=1
U PN Ay (12)

350



MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 6, 347-357

This EOA determines the parameter values with the lowest
f — value. The EOA parameters initialise a population size
of 50, and an iteration count of 200 is selected based on grid
search tuning for biomedical optimisation tasks. The initial
grid search tuning was performed by varying the population
size (30-70) and iterations (100-300) to evaluate the conver-
gence speed and error minimisation. The selected configu-
ration (i.e., size = 50, iteration = 200) provided the optimal
trade-off between prediction accuracy and a low error rate.
As a result, this setup ensures consistent efficiency while
maintaining modest processing requirements for drug deli-
very studies based on simulation.

Generate an initial population of parameters representing SLRC
circuit (resistors,

P <)
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l

Evaluate the fitness of each candidate solution in the
by paring the calculated @ values with
the measured skin impedance

phase el
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Fig. 4. Flowchart of the Ebola Optimisation Algorithm for SLRC
circuit parameter normalisation.

solutions using these dynamics

In the EOA, parameter values are passed to an objective
function, which aims to produce a result indicating the
parameters are "good". Fitting datasets Zy; are created based
on the parameters that provide the best fit for a given model.
The mean absolute percentage error (MAPE) measures the
statistical predictive performance of the proposed method. It
usually conveys accuracy through (13):

Zer — A
MAPE = - Zl(ﬁt data)

Adata

where n is the number of fitting points, Zg; is the predicted
value from the circuit, and A4, 1S the actual observed value.
A model with a low MAPE value produces the best results.
Calculating fitness accuracy involves calculating the
coefficient of determination (R?). This provides insight into
the goodness of fit of a model in statistics, and it measures the
accuracy of regression predictions by comparing them to the
actual data points.

| (13)
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C. Poisson—Boltzmann—Nernst—Planck model

The PBNP model [25] extends the PNP model by
incorporating Boltzmann distributions to account for
equilibrium ion concentrations under potential fields. The
PBNP model is formulated as a hybrid approach to efficiently
simulate ion transport in multi-layered skin under ionto-
phoretic stimulation. Specifically, this hybrid approach
integrates the NP equation for target ion-species and the
Boltzmann distribution for non-target ions. Target ions are
assumed to undergo active electro-diffusion, while non-target
ions are assumed to be in quasi-equilibrium, reducing
computational complexity without compromising accuracy.
Boundary conditions include a fixed potential (Dirichlet) at
the skin surface and zero-ion flux (Neumann) at the deepest
boundary. Continuity conditions are enforced for ion flux and
potential at layer interfaces.

Multi-ionic systems such as cutaneous medication
administration, particularly benefit from this method because
they involve interactions between ions and an electric field.
The Boltzmann distribution for ion concentration is given by:

z.Fo
= 14
n, = n? exp RT (14)
The derived flux equation for the PBNP model is:
D,z.F n, dz
T 15
Je =%t dx (13)

This model provides a comprehensive understanding of
how ions and medications permeate through skin layers under
an electric field, aiding the advancement of iontophoretic
drug delivery techniques. As a result, it is possible to assess
the impedance of the skin at various layers.

3. EXPERIMENTAL RESULTS

In this section, the mathematical solutions of the PBNP
model were simulated using MATLAB 2018a to evaluate ion
transport and drug diffusion across stratified skin layers. The
simulation results presented in this research are supported by
in-silico validation using established skin impedance datasets
and numerical modelling techniques. The proposed model
was evaluated across 12 anatomical regions. The ionto-
phoresis of Naltrexone HCI was simulated using drug and
concentration data. Its concentration in dissociated saturated
solution at 36 °C (309 K) and its diffusion coefficient are
83.76 x 102 mm?/s, respectively, after which a dispersed
saturated solution of the medication is released from the
reservoir. According to our measurements, the concentration
of the drug solution was 31.252 g/mm?. As impedance data
were available, iontophoretic drug administration at the 12
different sites of the human body was considered in this
investigation. Skin layer thicknesses were 40 mm for SC,
164 mm for the epidermis, 5888 mm for the dermis, 191 mm
for the hypodermis, and 2845 mm for depth. The boundaries
between the layers were 0, 0.040, 0.164, 6.052, 7.965, and
10 mm, respectively. It is possible to simulate drug diffusion
and flux measurements accurately by modelling parameters
using impedance data at different kHz.
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Fig. 5. Visual representation of (a) Anatomical sites on the human
body considered for iontophoretic drug delivery simulation. (b)
Simulated drug concentration profiles across skin depths using the
proposed model.

Fig. 5 illustrates the process of TDD using iontophoresis at
various skin depths in different sites of the human body.
PBNP regulates iontophoretic flux, involving passive
diffusion and electrotransport. Drug molecules are delivered
through stratified skin layers, with counter electrodes
ensuring current flow. Drug concentration diminishes with
increasing depth, highlighting the importance of electrical
control for targeted delivery.

Table 1 presents the impedance values measured across
different skin layers (SC, Epidermis, Dermis, Hypodermis,
and Depth) for five models: Montague, CPE, Tregear-1,
Tregear-2, and Hybrid. Impedance is highest in the SC and
decreases progressively through the deeper layers. The
Tregear model shows significant impedance variability
across layers.

Table 2 shows electrotransport flux values for each skin
layer across the same five models. The flux values are highest
in the SC and Epidermis, reflecting their greater transport
potential. The deeper layers, such as the Dermis and
Hypodermis, show reduced flux due to resistance. Depth
exhibits negligible or zero flux in certain models.

Table 3 provides drug concentrations in molar units,
highlighting the distribution across skin layers for the models.
The SC and Epidermis maintain the highest molar con-
centrations, consistent with their greater retention capacity.
Deeper layers display lower concentrations, while the tissue
layer holds the least. The proposed model achieves a more
balanced drug distribution across layers.

Table 1. Impedance [Q cm?] across different skin layers for all models.

Layer Montague = CPE Tregear-1 Tregear-2 SLRC (proposed)
SC 8452.34 8339.12 8210.89 6543.78 6520.43
Epidermis 6295.12 6203.98 6289.67 5082.34 4752.89
Dermis 783.12 710.45 735.56 850.92 903.78
Hypodermis 365.45 285.67 299.45 522.34 610.12
Depth 8.21 0.12 0.00 276.45 371.54

Table 2. Electrotransport flux [pg/mm?s] across different skin layers for all models.

Layer Montague  CPE Tregear-1 Tregear-2 SLRC (proposed)
SC 167.12 162.34 165.45 139.87 126.78
Epidermis 125.87 122.76 123.56 103.45 95.34
Dermis 17.12 15.78 16.45 18.12 17.89
Hypodermis 7.12 6.45 6.89 11.34 13.56
Depth 0.34 0.00 0.12 5.87 7.34

Table 3. Total drug concentration [mole/m?] across different skin layers for all models.

Layer Montague = CPE Tregear-1 Tregear-2 SLRC (proposed)
SC 390.67 387.12 392.34 418.12 378.56
Epidermis 328.45 324.67 326.12 275.67 260.78
Dermis 7.12 6.89 7.34 6.12 7.45
Hypodermis 3.89 2.87 3.23 445 5.34
Depth 0.65 0.00 0.12 1.78 2.56
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In Fig. 6, the Montague model, computational fluid
dynamics (CFD)-based model, Tregear 1&2 models, and the
Proposed model are among the models used to analyse
variations in parameters associated with drug delivery
through skin depth. In Fig. 6(a), skin impedance decreases
with increasing skin depth, which is crucial for assessing drug
penetration. Fig. 6(b) shows a decrease in electrotransport
flux across deeper epidermal layers as epidermal depth
increases. Fig. 6(c) shows that medication concentration, as
determined by the electrotransport mechanism, decreases
with greater skin penetration. Due to their consistent trends,
these models provide reliable forecasting of drug delivery
performance.
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Fig. 6 (a) Skin impedance; (b) Electrotransport flux; and (c) Drug
concentration derived from the electrotransport component with
variation in skin depth.

Table 4 presents the total drug concentration (mole/m?)
across various skin layers at different current densities
(I, mA/cm?). As current density increases, a significant rise in
drug concentration is observed across all layers. The SC
shows the highest concentration due to its proximity to the
drug source, while the tissue shows the lowest. This trend
highlights the direct relationship between current density and
drug delivery efficiency during iontophoretic administration.

Table 4. Total drug concentration [mole/m®] with variations in
current density (/, mA/cm?).

I[mA/em?] =01 [=02 1=04 [=05 [=10
SC 140.12 205.36 329.85 39247 710.29
Epidermis 89.34 132.19 218.76 261.42 480.14
Dermis 232 376 645 784  15.08
Hypodermis  1.63 242 389 451 8.2
Depth 124 162 236 272 451

Fig. 7 shows the distribution of drug concentration
(ng/mm?) across different skin depths (0-10 mm) under
varying current densities (0.1, 0.2, 0.4, 0.5, and 1.0 mA/cm?).
Higher current densities result in deeper drug penetration but
lower concentrations at the surface. The colour gradient
indicates drug concentration, with yellow representing higher
values and purple representing lower values. Drug con-
centration decreases as skin depth increases for all current
densities. This highlights the effect of current density on drug
delivery efficiency and depth of penetration.
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Fig. 7. Total drug concentration [ug/mm?] at different skin layers in
current density [mA/cm?].
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Fig. 8. Analysis of the proposed model based on MAPE and R?
values across various body regions.

Fig. 8 shows the prediction performance of the proposed
model across 12 anatomical areas, based on MAPE and R?.
According to the table, the palm region has the lowest MAPE
(0.134) and the highest R? (0.981). Each location shows high
R? values (0.94), indicating a superior model fit across
arange of skin types and anatomical variations. Based on
these results, the proposed model is versatile and robust
enough to optimise medicine administration in specific
regions for simulating TDD.
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Fig. 9. Performance analysis of the proposed model based on MAPE
vs Frequency for TDD.

Fig. 9 shows the impact of current frequency on prediction
accuracy using MAPE as the evaluation metric. Among the
tested frequencies, 4 X 10° Hz produced the lowest MAPE

(0.234 %), indicating optimal conditions for drug penetration.
The reported MAPE values at 2 x 10° Hzand 8 x 10° Hz were
higher, indicating inferior impedance behaviour. This de-
monstrates the importance of frequency tuning for effective
transdermal drug delivery.

Table 5 compares the mean and standard deviation (SD) of
drug delivery efficiency across different body parts at
frequencies of 2 x 10° Hz, 4 x 10°* Hz, and 8 x 10° Hz. The
values show that 4 x 10° Hz consistently yields lower mean
values than the other frequencies, indicating optimal
conditions for drug delivery. The SDs for 4 x 10* Hz suggest
better control and homogeneity of delivery. Compared to
2 x10*Hz and 8 x 10°* Hz, higher mean values indicate
greater resistance and less effective drug penetration. The SD
for 4 x 10° Hz is moderate, ensuring controlled delivery with
minimal variability compared to other frequencies. All body
components exhibit the same pattern, highlighting the higher
efficiency of 4 x 10° Hz. This demonstrates that 4 x 10° Hz is
the most effective frequency for skin medication delivery
applications.

Table 5. Mean and SD [Q] of impedance for various body parts.

2 x10°Hz 4 x10°Hz 8 x 10° Hz

Body parts  Mean SD Mean SD Mean SD

Face 5.60 x 10° 1840.12 420 % 10° 1450.25 6.80 x 10? 2115.37
Neck 1.02 x 10* 2155.20 7.85 x 10? 1780.55 1.12 x 10* 2401.28
Shoulder 1.10 x 10* 2250.30 8.20 x 10? 1720.45 1.18 x 10* 2435.12
Chest 1.25 x 10* 2445.41 9.05 x 10? 1865.33 1.34 x 10* 2560.11
Belly 1.30 x 10* 2235.75 9.50 x 10? 1900.25 1.38 x 10* 2710.32
Hip 1.18 x 10* 2145.88 8.70 x 103 1805.40 1.26 x 10* 2605.45
Back 1.12 x 10* 2140.82 8.50 x 103 1775.55 1.22 x 10* 2525.87
Ventral 1.25 x 10* 2195.65 9.20 x 10? 1825.75 1.32 x 10* 2650.20
Dorsal 1.50 x 10* 2280.34 1.05 x 10* 1950.45 1.60 x 10* 2755.30
Palm 1.75 x 10* 2370.12 1.20 x 10* 2050.50 1.85 x 10* 2855.20
Knee 1.45 x 10* 2200.55 1.00 x 10* 1850.15 1.55 x 10* 2705.75
Ankle 1.60 x 10* 2335.22 1.12 x 10* 1955.40 1.70 x 10* 2800.35
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Fig. 10. MAPE value comparison of different models for different body parts (a) Upper body regions and (b) Lower body regions.

Fig. 10 presents a comparative analysis of the proposed
model with the Montague model, CPE model, Tregear L1
model, and Tregear L2 model based on MAPE values. MAPE
values for the face, neck, chest, shoulder, back, and belly are
shown in Fig.10(a), while ventral, hip, dorsal, palm, knee, and
ankle MAPE trends are shown in Fig. 10(b). The lower MAPE

across all body sections indicates superior performance of the
proposed model. The CPE model also performs well,
especially when it comes to minimising errors. The Montague
models show a higher error rate, while the Tregear models
provide moderate MAPE values. These patterns demonstrate
that the proposed model is effective in optimising drug
distribution to different parts of the body.
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Table 6. Comparison analysis of the proposed SLRC circuit with existing models across various body parts.

MAPE values R Cr N R?
Body parts Montague CPE  Tregear-1  Tregear-2  Proposed Proposed Proposed Proposed Proposed
Face 0.613 0.531 0.665 0.582 0.483 72.476 0.495 1.000 0.945
Neck 0.561 0.342  0.585 0.506 0.309 17.465 0.496 0.924 0.961
Shoulder 0.518 0.320 0.578 0.501 0.284 13.584 0.451 0.870 0.964
Chest 0.501 0.320 0.564 0.507 0.225 10.027 0.447 0.884 0.972
Belly 0.505 0.256 0.515 0.519 0.250 45.268 0.312 0.998 0.968
Hip 0.520 0.280 0.528 0.498 0.261 38.923 0.315 0.962 0.965
Back 0.505 0.284 0.546 0.415 0.250 15.385 0.286 0.984 0.966
Ventral 0.494 0.343  0.556 0.506 0.268 23.948 0.471 0.908 0.962
Dorsal 0.475 0.272  0.495 0.512 0.283 80.638 0.352 1.000 0.958
Palm 0.494 0.211 0.472 0.418 0.134 18.225 0.441 0.844 0.981
Knee 0.463 0.297 0.424 0.495 0.257 55.687 0.346 0.975 0.969
Ankle 0.505 0.266 0.532 0.483 0.220 40.315 0.417 0.903 0.974

Table 6 presents a performance comparison of the pro-
posed SLRC circuit with existing models across various body
parts based on different parameters. These parameters include
MAPE, skin resistance (R in kQ), capacitance (Cy) in nF),
a scaling factor (Sp), and the highest coefficient of deter-
mination (R?). For the palm, the proposed SLRC circuit has
a MAPE value of 0.134, where lower values indicate higher
prediction accuracy. Skin resistance (Rg.) varies between
body parts, with the dorsal region (80.636 kQ) showing the
highest value and the chest (10.027 kQ) the lowest. In the
neck, capacitance (Cr) is comparatively constant at 0.499 nF,
while it is as low as 0.286 nF in the back. According to
Table 7, the SF values across all body parts indicate
consistent performance of the proposed model in predicting
skin characteristics, providing accurate guidance for opti-
mising transdermal drug delivery strategies. The palm region
shows the lowest MAPE (0.134) and the highest R? (0.981).
Each location shows high R? values (0.94), indicating
superior model fit across a range of skin types and anatomical
variations. Based on these results, the proposed model is
versatile and robust enough to optimise medicine
administration in specific regions for simulating TDD.

Table 7. Comparison of different optimisation algorithms

Table 7 compares existing algorithms such as Bayesian
optimisation (BO), particle swarm optimisation (PSO), and
genetic algorithm (GA) with the proposed EOA. The EOA
achieved the lowest MAPE and highest R?, indicating superior
accuracy in modelling skin impedance and drug flux. The
existing BO algorithm was reliable but slower and less
effective in highly non-convex spaces such as stratified skin
models. Moreover, the PSO algorithm offered faster
convergence but often failed in local minima due to its basic
velocity-position update rule. The GA provided a good
balance of exploration and exploitation, yet showed slower
convergence compared to EOA. This analysis demonstrates
that the proposed EOA offers the best trade-off between
speed, accuracy, and robustness, making it ideal for complex
biomedical optimisation tasks.

Table 8 presents a comparison of state-of-the-art models
with the proposed model in terms of efficiency and
computational criteria. The proposed model achieves the
highest accuracy (R*> = 0.96) and the lowest error
(MAPE = 0.134), while maintaining a lower computational
complexity of O(nlogn). The use of EOA further enhances
reliability by optimising circuit parameters and minimising
parameter uncertainty across different body regions.
Furthermore, the proposed model significantly reduces
training and inference times compared to other models, which

Algorithm  MAPE R Convergence time [s] range from 180 to 300s and 50 to 70 ms, respectively.
BO 0.307 0.961 18.6 Despite its complexity, the proposed model balances speed,
PSO 0.276 0.948 14.1 accuracy, and efficiency for TDD. As a result, it is clearly
GA 0.265 0.954  12.5 shown that the proposed model is superior to traditional
EOA (ours) 0.234 0982 93 methods, making it ideal for real-time TDD applications.
Table 8. Comparison evaluation: State-of-the-art models vs the Proposed model.

Reference R? MAPE Complexity Training time [s] Inference time [ms]

[28] 0.81 0.492 0(n® 180 50

[29] 0.84 0.478 0(n? 240 60

[6] 0.76 0.529 0(n 300 70

[8] 0.79 0.507 0(n?*logn) 220 65

Proposed 0.96 0.134 O(nlogn) 95 20
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4. DISCUSSION

The simulation findings presented in the results section are
supported by in-silico validation using established skin
impedance datasets and numerical modelling techniques.
Various anatomical and biophysical characteristics of the skin
may influence prediction errors between regions, such as the
palm and forearm. Due to its thick SC and high concentration
of sweat glands, the palm retains higher drug concentrations,
resulting in a lower MAPE value. In contrast, the forearm,
with its thinner skin, lower ionic concentrations, and greater
moisture fluctuation, exhibits higher computational errors
and less predictable impedance behaviour. These variations
have a direct impact on drug diffusion and ion transport under
iontophoretic stimulation. Additionally, EOA effectively
reduces complexity while improving overall prediction
accuracy by optimising region-specific circuit characteristics.
Therefore, skin-specific features should be considered when
optimising transdermal medication delivery techniques.

From this analysis, the proposed model is suitable for TDD
applications due to its many benefits, including a low error
rate (MAPE = 0.134), high prediction accuracy (R? = 0.96),
and low computational complexity (O(nlogn)). It
efficiently optimises impedance parameters across different
body parts and models skin stratification. The key advantage
of the proposed method lies in its integration of multi-layer
impedance modelling, ion flux simulation, and optimisation.
However, its improved performance is countered by a slightly
higher computational complexity. Moreover, the perfor-
mance of the proposed model may be affected by variations
in skin conditions, moisture, and temperature. Simulated data
cannot accurately represent clinical circumstances in the
current evaluation. To address these limitations, future work
will focus on validating the model using clinical data from
diverse populations and implementing it on embedded
systems for real-time TDD applications.

5. CONCLUSION

This research presents a novel systematic approach to
device-assisted TDD using an advanced skin impedance
modelling method and optimisation techniques. The key
original contributions and distinctions from previous work
are summarised below:

e The SLRC model was developed by combining the
Montague, CPE, and Tregear models to simulate multi-
layer skin impedance more accurately.

e Compared to traditional models, the PBNP model
provides accurate estimates of drug concentration and
electrotransport flux across stratified skin layers with
electric stimulation.

e EOA was used for the first time in TDD modelling to
optimise impedance parameters, achieving lower
computational error and faster convergence than the
existing methods such as GA, PSO, and BO.

e The proposed model achieves the lowest MAPE (0.134)
and highest R? (0.96) compared to other existing
models, demonstrating its robustness across various
body regions.

e The results indicate that a frequency of 4 x 10° Hz yields
the best impedance and drug penetration, highlighting
the importance of frequency and current density in
increasing drug levels.

Based on the experimental findings, the proposed model
provides a robust and efficient framework for improving
TDD systems, with promising implications for clinical
applications. Future work includes in-vitro experiments using
excised skin samples and in-vivo studies with biomedical
research laboratories to validate and refine the model under
physiological conditions. Additionally, we plan to explore
other non-invasive enhancement techniques, such as
ultrasound or microneedles with iontophoresis, to further
optimise drug delivery efficiency and broaden the scope of
TDD applications.
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