
MEASUREMENT SCIENCE REVIEW, 26, (2026), No. 1, 14-23 

DOI: 10.2478/msr-2026-0003  *Corresponding author: baiweizhu@cczu.edu.cn （B. Zhu）  

14 

 

 

 

Research on Tool Wear State Recognition Method Based on 

Multi-Scale Feature Extraction and Deep Residual Network 

Fusion  

Erliang Liu1, Cong Liu1, Yuhang Du1, Baiwei Zhu1*, Limin Shi2 

1School of Mechanical Engineering and Railway Transit, Changzhou University, 213164, Changzhou, China 
2Mechano-Electronic and Automotive Engineering College, Tianshui Normal University, 741001, Tianshui, China 

Abstract: To enhance the intelligence of machining processes, accurate recognition of tool wear states has become a key issue in the 
manufacturing field. However, due to the non-stationary and high-dimensional nature of cutting signals, traditional methods face significant 
challenges in feature extraction and state classification. In the context of cutting processes, challenges such as difficulty in identifying tool 
wear states and the complex composition of monitoring information features persist. To address these issues, this paper proposes a deep 
learning model that integrates multi-scale feature extraction with a residual connection network (Multi-scale ResNet). Specifically, cutting 
vibration signals are processes using continuous wavelet transform (CWT), which enables the conversion of time-frequency information 

into images. The proposed deep learning model is then used for feature extraction and state identification. The proposed model is validated 
through cutting experiments conducted on γ-TiAl alloys. Experimental results show that the Multi-scale ResNet model achieves higher 
recognition accuracy than traditional models such as convolutional neural networks – support vector machines (CNN–SVM), Transformer, 
and ResNet in the initial and normal wear stages. It effectively mitigates misjudgments associated with initial and normal wear, achieving 
a prediction accuracy of 93.8 %, a recall rate of 94.2 %, and an F1 score of 94 %. This model offers a novel and effective approach for tool 
wear state monitoring, contributing to improved cutting processing efficiency and increased intelligence in production. 
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1. INTRODUCTION 

During the machining process, tool wear is unavoidable. 

Recognizing tool wear conditions is one of the most 

important technologies for increasing cutting efficiency and 

advancing the intelligent transformation of manufacturing 

processes. There are two types of tool condition monitoring 

methods: direct and indirect. The direct method uses high-

speed cameras and optical microscopes to determine the tool 

wear level. In contrast, the indirect method derives tool wear 

conditions from sensor signals collected during machining, 

such as machine tool current, power, noise emission signals, 

or vibration signals. Unlike direct monitoring, indirect 

approaches are less intrusive to the machining process and are 

therefore more widely used [1]. Currently, the most widely 

applied machine learning methods for tool condition mo-

nitoring include artificial neural networks (ANN), ensemble 

learning, support vector machines (SVM), Bayesian network 

classifiers, and Hidden Markov Models (HMM) [2], [3]. In 

addition, convolutional neural networks (CNN) and long 

short-term memory (LSTM) networks are among the most 

commonly    used   deep   learning   models   for   tool   wear 

prediction [4], [5]. However, a major limitation of these 

approaches is that they typically use shallow architectures, 

which are inadequate for capturing deep features from large-

scale datasets [6]. Furthermore, manual feature extraction 

may result in the loss of critical information contained in raw 

signals [7], ultimately affecting both the training efficiency 

and recognition accuracy of the model. Deep learning 

methods, by eliminating the need for handcrafted features, 

overcome the bottlenecks of traditional neural networks, such 

as gradient vanishing and local minima, and demonstrate 

significant potential in condition monitoring tasks [8]. Liu et 

al. [9] established the relationship between acoustic signals 

and tool wear under various cutting conditions, using 

regression analysis and ANN to predict the degree of tool 

wear, thereby eliminating the dependency on specific cutting 

parameters. Guo et al. [10] analyzed the correlation between 

tool wear and the fluctuation trends of milling signals and 

developed a model linking tool wear with multifractal 

parameters, enabling tool wear condition monitoring. 

Mohanraj T et al. [11] used vibration signals as training data, 

extracting wavelet coefficients and statistical features, and 
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applied various algorithms to classify tool wear states. Shi C 

et al. [12] proposed a novel deep learning-based data-driven 

modeling framework, in which multiple parallel feature 

spaces were constructed to train the model. By integrating 

high-level features with tool wear-related characteristics, 

their method achieved a classification accuracy exceeding 

96 %. Ma M et al. [13] fused vibration and acoustic signals 

and introduced a Deep Coupled Restricted Boltzmann 

Machine (DCRBM) model. The proposed symmetric 

DCRBM outperformed other fusion strategies and 

demonstrated excellent performance in tool condition 

evaluation. Zhang et al. [14] proposed a compact CNN to 

address the overfitting problem caused by the limited number 

of fault samples. 

The residual neural network (ResNet) model, developed by 

Kaiming He, was designed to construct ultra-deep neural 

networks that are not affected by the vanishing gradient 

problem [15]. ResNet is a conventional feedforward network 

architecture with residual connections, where the output of 

the Lth layer is defined based on the output of the (L−1)th layer 

and the output after performing various operations. These 

operations typically include convolution with filters of 

different sizes, batch normalization (BN), and the application 

of activation functions (e.g., ReLU) to the (L−1)th layer’s 

output [16], [17]. ResNet architectures have been developed 

with varying depths, such as ResNet-18, ResNet-34, ResNet-

50, ResNet-101, ResNet-152, and even ResNet-1202. The 

widely used ResNet-18 consists of 17 convolutional layers 

and one fully connected layer at the end of the network. 

As indicated by the aforementioned literature, tool wear 

state recognition in the field of deep learning is primarily 

achieved through CNNs and LSTM networks. However, 

CNNs are inherently limited in their ability to fully capture 

temporal dependencies within the data, necessitating various 

auxiliary processing steps. Conversely, while LSTM 

networks can model time-series information, they still suffer 

from attenuation of long-range dependencies and are 

intrinsically more complex than CNNs, which negatively 

impacts computational efficiency. Due to their inadequate 

utilization of multi-scale features, conventional neural 

network models struggle to accurately capture and distinguish 

the subtle variations among different wear regions. This 

limitation results in significant misclassifications and 

ambiguous boundaries when identifying the various stages of 

tool wear. Therefore, this paper proposes a deep residual 

connection network model based on stacked convolutional 

structures and multi-scale feature extraction modules (Multi-

scale ResNet), aiming to enhance the perception and 

extraction capabilities for multi-frequency and multi-scale 

features in cutting vibration signals. By incorporating multi-

scale convolutional structures and residual connection 

mechanisms, the model maintains the expressive power of 

deep-layer features while effectively mitigating the 

information loss problem encountered in traditional networks 

as depth increases. The proposed model was validated 

through cutting experiments on γ-TiAl alloys. The results 

demonstrate that Multi-scale ResNet achieves higher 

accuracy in tool wear state recognition tasks, particularly in 

the initial wear and normal wear stages, significantly 

reducing misjudgment rates and exhibiting stronger 

robustness and practical application value. 

2. TOOL WEAR SIGNAL PROCESSING AND FEATURE 

EXTRACTING 

During the machining process, as cutting time increases, 

tool wear progressively intensifies. This wear progression is 

typically illustrated by a tool wear curve, as shown in Fig. 1. 

The tool wear process can be divided into three distinct 

stages: the initial wear stage, the normal wear stage, and the 

severe wear stage. Due to highly variable cutting parameters 

and complex working conditions in real-world manufacturing 

environments, accurately identifying the tool wear state has 

become crucial for ensuring machining stability and 

maintaining product quality. If the wear condition is not 

correctly identified, improper timing of tool replacement may 

occur: replacing the tool too early leads to underutilization 

and increased production costs, while replacing it too late 

may result in decreased machining quality, tool breakage, or 

even damage to the machine itself. Such issues significantly 

compromise overall processing efficiency and product 

quality. Therefore, there is an urgent need to establish an 

efficient and reliable tool wear state monitoring system to 

achieve real-time and accurate assessment of tool condition 

during the machining process. To this end, this paper 

proposes a deep neural network structure (Multi-scale 

ResNet) based on deep residual connections and stacked 

multi-scale feature extraction modules, aiming to fully 

exploit the multi-scale and multi-frequency feature infor-

mation in cutting vibration signals, thereby improving the 

accuracy and response speed of tool wear state recognition. 

The model effectively alleviates information attenuation and 

gradient vanishing problems typically found in traditional 

deep networks while ensuring deep feature extraction, 

providing a feasible technical approach and theoretical 

support for real-time tool wear state monitoring. 

 

Fig. 1.  Tool wear curve. 
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In this study, cutting tool wear experiments on γ-TiAl alloy 

were conducted using Mitsubishi carbide inserts 

CNMG120408-MJ (carbide grade RT9010) on a CKA6150 

lathe. The machining parameters were set as follows: cutting 

speed 𝑣𝑐 was 25 m/min, feed rate 𝑓 was 0.15 mm/r, and depth 

of cut 𝑎𝑝 was 0.15 mm/r. Vibration signals during the cutting 

process were collected using a vibration acquisition system 

from Shenzhen Jilanding Intelligent Technology Co., Ltd. 

The flank wear of the tool was measured and recorded using 

a VHX-700C super-depth 3D microscopy system (Japan), 

which is equipped with a 20-2000 × zoom optical lens, 

providing a maximum image resolution of 0.5 μm, and 

employs automatic focusing and extended depth-of-field 

(EDF) techniques to obtain the flank wear measurements of 

the tool. The experimental equipment used is shown in Fig. 2. 

Tool wear was quantitatively measured using an EDF 3D 

microscopic imaging system. The acquired wear data were 

subsequently classified into distinct wear states using the 

Expectation-Maximization (EM) algorithm. The classifi-

cation results, along with the corresponding time intervals for 

each wear stage, are presented in Table 1. This table provides 

the measured wear values and associated machining durations 

for each stage. In the severe wear stage, tool failure is 

indicated by a wear value of +∞. 

Table 1.  Tool wear status classification. 

Tool wear [mm] Tool wear status Time [min] 

[0, 0.0675) Initial wear [0, 9) 

[0.0675, 0.245) Normal wear [9, 23.5) 

[0.245, +∞) Severe wear [23.5, 29] 

 
(a) 

 
(b) 

Fig. 2.  Experimental and signal acquisition equipment. (a) Experimental machine tool and cutting test site; (b) Super depth-of-field 

microscope, vibration signal acquisition equipment, and test tool. 

A. Data preprocessing 

During the cutting process, a large volume of raw signal 

data is collected from sensors. This data contains information 

relevant to tool wear as well as noise and other irrelevant 

components. If used directly for recognition by deep learning 

models, it may result in excessive computational load and 

reduced recognition accuracy. Therefore, it is necessary to 

preprocess the low-quality raw data. During cutting, the tool 

does  not  engage  with  the workpiece  during tool entry and 

 

exit, so no wear occurs at these stages. Thus, in the data 

processing stage, signals corresponding to tool entry and exit 

should be removed to prevent interference with the mo-

nitoring results. Specifically, the first and last 2.5 % of the 

raw data are considered invalid and are excluded, with the 

remaining data regarded as effective cutting signals. From 

these effective cutting signals, the relatively stable segments 

of the cutting process are further extracted as the final valid 

data input for the model. The raw signal data processing 

procedure is illustrated in Fig. 3. 
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Fig. 3.  Data collection and preprocessing. 

B. Time-frequency domain feature extraction 

Time-domain or frequency-domain analysis methods are 

suitable for processing stationary signals, but they can extract 

feature information only from either the time or frequency 

domain. However, the signals obtained during the cutting 
process are often non-stationary. Therefore, this study adopts 

an EDF 3D microscopic imaging system to transform the 

time-series data into images, enabling a joint representation 

of both time and frequency characteristics. These images 

effectively capture the dynamic patterns of the signal over 

time. Subsequently, a deep learning model is constructed to 

extract features from the images and achieve accurate 

recognition of tool wear states. 

To ensure that the time-frequency representations capture 

all relevant dynamic components of the cutting process, the 

vibration signals were sampled at 20 kHz. This sampling rate 
has been widely adopted in previous studies. According to the 

Nyquist criterion, the sampling rate should be at least twice 

the highest frequency present in the signal to avoid aliasing. 

Preliminary experiments were also conducted to compare 

different sampling rates (10 kHz, 20 kHz, and 40 kHz), and 

the results showed that 20 kHz adequately preserves the 

frequency components related to tool wear while keeping the 

data volume and computational load manageable. 

Common time-frequency analysis (TFA) methods include 

the Fourier Transform [18], continuous wavelet transform 

(CWT) [19], and Wigner–Ville Distribution [20]. These 

methods can generate time-frequency representations of 
signals. However, when analyzing signals with multiple 

frequency components, the Wigner–Ville Distribution, as 

a quadratic transform, may experience cross-term 

interference. The Fourier Transform, on the other hand, uses 

 

constant sampling intervals in both the time and frequency 

domains, which limits its ability to adjust the transformation 

window size according to frequency variations. In contrast, 

the CWT overcomes the resolution limitations of the Fourier 

Transform by providing multi-resolution representations, 

making it especially suitable for analyzing complex time-

series signals. Therefore, in this section, the CWT is used to 

convert the preprocessed vibration signals into 22 × 224 × 3 

time-frequency images, as shown in Fig. 4. 

Let the signal collected during the cutting process be 𝑥(𝑡). 

The CWT of 𝑥(𝑡) is expressed as: 

 

𝑊𝑇(𝜏, 𝑠) = ∫ 𝑥(𝑡) 𝜓𝜏,𝑠
∗ (𝑡)

∞

−∞

d𝑡 =
1

√𝑠
∫ 𝑥(𝑡) 

∞

−∞

𝜓𝜏,𝑠
∗ (

𝑡 − 𝜏

𝑠
) d𝑡       

(1) 
 

where 𝜓(𝑡) is the wavelet basis function, and 𝜏, 𝑠 are the 

translation and scaling coefficients. 

On the time axis, the wavelet is shifted by the translation 

coefficient 𝜏 and convolved with the target signal, enabling 

extraction of the signal's temporal dependencies. In terms of 

frequency, the length and frequency of the wavelet are 

adjusted by the parameters. The window length changes 

synchronously with the wavelet length, giving wavelet 

analysis multi-resolution properties. This approach allows for 

finer capture of the signal's temporal variations when 

processing high-frequency components and more accurate 

distinction of the signal's frequency characteristics when 

handling low-frequency components. Compared to the short-

time Fourier Transform (STFT), this method is better suited 

for capturing transient changes in non-stationary signals. 
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Fig. 4.  The vibration signals and their CWT at different stages of tool wear. 

3. DEEP LEARNING-BASED TOOL WEAR CONDITION 

MONITORING 

The concept of multi-scale feature extraction originates 

from the human visual system's ability to distinguish objects 

at various scales. In image processing, multi-scale 

convolution helps capture both local and global information. 

In time-frequency images, different scale convolution kernels 

can detect vibration patterns at different frequency bands. On 

the other hand, the introduction of ResNet addresses the 

gradient degradation problem in deep networks and allows 

information to be transmitted across different layers, enabling 

the construction of more complex nonlinear mappings. 

Therefore, this paper embeds the multi-scale convolution 

structure into the residual blocks of ResNet to enhance the 

model's feature perception range and improve the network's 

ability to distinguish differences in vibration images under 

different wear states. 

The ResNet network, with its designed residual 

connections, effectively addresses the problems of gradient 

vanishing and gradient explosion in deep learning models 

[15]. Residual connections enable the network to transmit 

information directly across multiple layers, helping to capture 

features at different levels. This cross-layer feature 

transmission enhances the network's perception and 

representation  capabilities.  Therefore, ResNet is selected as 

 

the base model for deep learning. However, the residual 

structure of ResNet focuses only on feature extraction at 

a single scale, which may cause the model to overly focus on 

certain parts of the sensor signal while neglecting other 

important information. To address this, this paper 

incorporates a multi-scale feature extraction module based on 

ResNet to improve the model's ability to extract multi-scale 

features. Experimental results show that the proposed model 

outperforms traditional methods. 

A. Residual block network 

ResNet is a significant milestone in the development of 

convolutional neural networks. In ResNet, a residual block 

contains a skip connection, allowing the neural network to 

directly learn the residual, i.e., the difference between the 

input and the desired output, as shown in Fig. 5. This design 

facilitates easier information flow within the network and 

effectively addresses the gradient vanishing and degradation 

issues that occur as network depth increases. The calculation 

formula for the residual block is as follows: 

 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 (2) 

 

where 𝑥 and 𝑦 represent the input and output vectors, and 

𝐹(𝑥, {𝑊𝑖}) denotes the residual mapping to be learned. 

 

Fig. 5.  Basic block in ResNet network. 

B. Multi-scale feature extraction module 

The original residual structure is insufficient for effectively 

extracting the multi-scale features of vibration signals. In 

contrast, the multi-scale feature extraction module enhances 

the  representation  of   multi-scale  features  by  constructing 

hierarchical residual connections within a single residual 

block, thereby expanding the receptive field of each network 

layer. This significantly improves the model’s ability to 

capture complex signals in time-frequency images and better 

extract features across different frequencies and time 
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domains. The multi-scale feature extraction module replaces 

a single 3 × 3 filter group with multiple smaller filter groups 

to achieve this effect. This module first applies a 1 × 1 

convolution to the input feature map, uniformly dividing it 

into s feature subsets, denoted as 𝑥𝑖, where 𝑖 ∈ {1,2, . . . , 𝑠}. 

Each feature subset 𝑥𝑖 has the same spatial resolution as the 

original feature map but only 1/𝑠 of the channels. Except for 

𝑥1, each 𝑥𝑖 is associated with a 3 × 3 convolution kernel, 

denoted as 𝐾𝑖(), with its output represented as 𝑦𝑖. Before 

being input to 𝐾𝑖(), each 𝑥𝑖 is added to the output of the 

previous layer 𝑦𝑖−1 to enable cross-layer feature fusion. To 

increase the number of feature subsets while reducing the 

number of parameters, the 3 × 3 convolution for 𝑥1 is omitted. 

Therefore, the output 𝑦𝑖 can be expressed as: 

𝑦𝑖 = {

𝑥𝑖                                      𝑖 = 1;

𝐾𝑖(𝑥𝑖)                             𝑖 = 2;

𝐾𝑖(𝑥𝑖 + 𝑦𝑖−1)         2 < 𝑖 ≤ 𝑠;
 (3) 

C. Framework for tool wear state recognition 

First, the sensor vibration signal data is preprocessed to 

remove outliers and eliminate segments corresponding to tool 

entry and exit. The processed vibration signals are then 

transformed into time-frequency representations using CWT, 

enabling the extraction of time-domain features. The 

resulting time-frequency images are subsequently divided 

into training and validation sets in a 7:3 ratio. Finally, the 

constructed convolutional neural network, Multi-scale 

ResNet, is used to recognize tool wear conditions, as shown 

in Fig. 6. 

 

Fig. 6.  Overall framework of the proposed methodology. 
 

.

D. A Multi-scale resnet-based approach for tool wear 

condition recognition 

The time-frequency images obtained through CWT are 

first uniformly resized to RGB images with dimensions of 

224 × 224 × 3, where 224 × 224 denotes the spatial re-

solution and 3 represents the three color channels. These 

images are then input into the model, sequentially passing 

through the Stem layer, the ResNet module, the multi-scale 

feature extraction module (Multi-scale ResNet), and the 

feature reduction layer (Reduction Layer). In the Stem layer, 

the input image first passes through a 7 × 7 convolutional 

layer, followed by BN and a ReLU activation function for 

initial feature extraction. This is followed by a max pooling 

layer to reduce the spatial dimensions of the feature maps. 

Next, the feature maps are fed into the backbone ResNet 

network, which consists of multiple residual units (Basic 

Blocks), which further extract high-level semantic features. 

Each  residual  unit  contains  two 3 × 3 convolutional layers 

connected by a shortcut to enable residual learning, 

enhancing training stability and generalization performance. 

After the third residual stage (Layer 3), a multi-scale feature 

fusion module (Multi-scale Layer) is introduced. This module 

uses a parallel architecture to extract features at multiple 

receptive field scales. It integrates local and global 

information through multiple convolutional paths, including 

1 × 1 convolutions, 3 × 3 convolutions, and dilated convo-

lutions. The outputs from these branches are concatenated 

along the channel dimension to fuse multi-scale features, 

effectively enhancing the model’s ability to represent the di-

verse characteristics of tool wear. After feature fusion, a glo-

bal average pooling layer compresses the 2D feature maps 

into a 1D vector, which is further mapped into a 128-dimen-

sional feature representation via a dimensionality reduction 

layer. Finally, this feature vector is fed into a fully connected 

layer and classified into different tool wear categories using 

the Softmax activation function, as shown in Fig. 7. 
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Fig. 7.  Overview of a Multi-scale ResNet-based model for tool wear condition recognition. 

 

4. MODEL TRAINING AND DATA VISUALIZATION 

In this study, model training and validation were performed 

on a workstation equipped with an Nvidia GeForce A6000 

GPU and running Windows 11. The training environment 

used PyCharm 2023.3.1 and PyTorch 2.1.0+cu118. A mini-

batch training strategy was adopted, and the learning rate was 

dynamically adjusted during training using a Warmup sche-

dule followed by a cosine annealing strategy. The AdamW 

optimizer was used for iterative optimization of the model 

parameters, with a weight decay term included to mitigate 

overfitting. The learning rate was set to 0.0002, with cosine 

annealing applied for learning rate scheduling, iterating every 

50 epochs. The Adam optimizer was used to update the loss 

function during training. The maximum number of iterations 

for model training was set to 100, with a batch size of 128. 

The input to the Multi-scale ResNet model consists of time-

frequency images representing tool wear features, obtained 

through CWT. The model output corresponds to three tool 

wear states, so the Softmax function was used for multi-class 

classification, with the following expression: 

 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 =
𝑒𝑣𝑖

∑ 𝑒𝑣𝑗𝑘
𝑗=1

 (4) 

 

where 𝑘 denotes the number of neural network outputs; 𝑣 is 

the output vector; 𝑖 denotes the category of cutting tool wear; 

𝑣𝑗 is the 𝑗th category value in the output vector 𝑣. 

To evaluate the performance difference between Multi-

scale ResNet and other models, the prediction results of the 

classification model were compared with the true results by 

calculating the numbers of true positives (TP), false positives 

(FP), false negatives (FN), and true negatives (TN). 

Commonly used evaluation metrics such as Confusion 

matrix, Recall, Precision, F1 score, and Accuracy were 

calculated using these values, as shown in (5-8): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (7) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (8) 

 

A. Results and discussion 

The model was trained using 70 % of the dataset as the 

training set, while 30 % was used as the validation set to 

assess the model's effectiveness. In this study, model 

performance was evaluated using accuracy, recall, precision, 

and F1 scores, as shown in Table 2. 
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Table 2 presents the performance evaluation metrics of the 

model after training, based on 10 training runs. These metrics 

include accuracy, recall, and precision for different stages of 

tool wear. The data show that the Multi-scale ResNet model 

achieves significant improvements in both the Initial wear 

and Normal wear stages. Data visualization indicates that the 

average accuracy, recall, and F1 score of the Multi-scale 

ResNet model are 2.9 %, 1.6 %, and 2.4 % higher, res-

pectively, than those of the CNN–SVM model. Compared to 

the Transformer model, the Multi-scale ResNet model 

outperforms it by 6.1 %, 6.3 %, and 6.2 %, and by 3.4 %, 

4.4 %, and 4.0 % compared to the ResNet model.  

From Table 2 and the Confusion matrix shown in Fig. 8, it 

is clear that most misclassifications occur in the initial wear 

and normal wear stages. This is because the feature maps of 

normal wear include characteristics from both the initial wear 

and rapid wear stages, which significantly impact the model's 

recognition  accuracy.   In  most  machining  scenarios,  it  is 

recommended to replace the cutting tool before severe wear 

occurs. This requires the model to have higher accuracy in 

recognizing rapid tool wear. The Multi-scale ResNet model, 

through its multi-scale feature extraction module, effectively 

leverages vibration signal features related to tool wear, 

helping the model better distinguish between initial wear and 

normal wear. 

Fig. 9 shows the classification results of four models: 

Multi-scale ResNet, CNN–SVM, Transformer, and ResNet. 

In the figure, the green line represents initial wear, the yellow 

line represents normal wear, the red line represents severe 

wear, and the blue line represents the model's predicted 

results. By observing the chart, it is evident that all four 

models perform well in distinguishing severe wear. However, 

when identifying initial wear and normal wear, they often 

make misclassifications. In contrast, the Multi-scale ResNet 

model significantly reduces misclassifications between these 

two stages, improving the model's recognition accuracy. 

 

Table 2.  Comparison of experimental results with other models. 

Models  Accuracy [%] Recall [%] Precision [%] F1 score [%] 

CNN–SVM[5] Initial wear --   90.9   83.3   87.0 

Normal wear --   86.8   93.9   90.2 

Severe wear -- 100.0   95.5   97.7 

Average 90.6    92.6   90.9   91.6 

Transformer[6] Initial wear --   78.8   76.4   77.6 

Normal wear --   84.9   86.5   85.7 

Severe wear -- 100.0 100.0 100.0 

Average 86.0    87.9   87.7   87.8 

ResNet Initial wear --   78.8   83.8   81.3 

Normal wear --   90.6   87.3   88.9 

Severe wear -- 100.0 100.0 100.0 

Average 88.8    89.8   90.4   90.0 

Multi-scale ResNet Initial wear --   90.0   87.1   88.5 

Normal wear --   92.4   94.2   93.3 

Severe wear -- 100.0 100.0 100.0 

Average 93.3    94.2   93.8   94.0 

 
                            (a)                                                     (b)                                                    (c)                                                     (d) 

Fig. 8.  Confusion matrix (a) CNN–SVM; (b) Transformer; (c) ResNet; (d) Multi-scale ResNet. 



MEASUREMENT SCIENCE REVIEW, 25, (2026), No. 1, 14-23 

22 

 

Fig. 9.  Recognition results of the four models.

5. CONCLUSION 

In this study, cutting vibration signals related to tool wear 

were obtained through γ-TiAl alloy cutting experiments, and 

a deep learning model was constructed to identify and predict 

tool wear states. The main conclusions are as follows: 

1. This paper proposes a tool wear state recognition model 

based on Multi-scale ResNet, which more accurately 

captures multi-scale features in vibration signals, 

thereby improving the accuracy of tool wear state 

identification. 

2. The proposed model integrates a multi-scale feature 

extraction module with a deep residual connection 

network, effectively addressing issues such as vanishing 

gradients, exploding gradients, and insufficient feature 

extraction capabilities in deep learning models. 

3. Based on the γ-TiAl alloy cutting experiment results, the 

Multi-scale ResNet model proposed in this paper 

outperforms traditional CNN–SVM, Transformer, and 

ResNet models in recognition accuracy during the initial 

wear and normal wear stages. The model achieves 

a prediction accuracy of 93.8 %, a recall of 94.2 %, and 

an F1 score of 94 %, with an average accuracy of 

93.3 %. This model provides an effective solution for 

real-time monitoring and intelligent recognition of tool 

wear states, helping to improve the efficiency and 

quality of cutting processes and promoting the 

intelligent development of production processes. 

4. Future research will focus on enhancing the model’s 

generalization capability across multiple cutting 

conditions and various tool types, incorporating transfer 

learning and related techniques to ensure reliable 

recognition under diverse machining scenarios. To meet 

the requirements of real-time monitoring and embedded 

deployment, efforts will be made to advance model 

lightweighting and edge-side adaptation through 

network architecture optimization, pruning, and quan-

tization, aiming to achieve higher generalizability, 

stronger robustness, and improved real-time performan-

ce, thereby expanding the model’s practical applicability 

in industrial production. 
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