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Abstract: To enhance the intelligence of machining processes, accurate recognition of tool wear states has become a key issue in the
manufacturing field. However, due to the non-stationary and high-dimensional nature of cutting signals, traditional methods face significant
challenges in feature extraction and state classification. In the context of cutting processes, challenges such as difficulty in identifying tool
wear states and the complex composition of monitoring information features persist. To address these issues, this paper proposes a deep
learning model that integrates multi-scale feature extraction with a residual connection network (Multi-scale ResNet). Specifically, cutting
vibration signals are processes using continuous wavelet transform (CWT), which enables the conversion of time-frequency information
into images. The proposed deep learning model is then used for feature extraction and state identification. The proposed model is validated
through cutting experiments conducted on y-TiAl alloys. Experimental results show that the Multi-scale ResNet model achieves higher
recognition accuracy than traditional models such as convolutional neural networks — support vector machines (CNN-SVM), Transformer,
and ResNet in the initial and normal wear stages. It effectively mitigates misjudgments associated with initial and normal wear, achieving
a prediction accuracy of 93.8 %, a recall rate of 94.2 %, and an F1 score of 94 %. This model offers a novel and effective approach for tool
wear state monitoring, contributing to improved cutting processing efficiency and increased intelligence in production.
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1. INTRODUCTION prediction [4], [5]. However, a major limitation of these

During the machining process, tool wear is unavoidable. approaches is that they typically use shallow architectures,
Recognizing tool wear conditions is one of the most which are inadequate for capturing deep features from large-
important technologies for increasing cutting efficiency and scale datasets [6]. Furthermore, manual feature extraction
advancing the intelligent transformation of manufacturing ~May result in the loss of critical information contained in raw
processes. There are two types of tool condition monitoring ~ Signals [7], ultimately affecting both the training efficiency
methods: direct and indirect. The direct method uses high- ~and recognition accuracy of the model. Deep learning
speed cameras and optical microscopes to determine the tool ~ Methods, by eliminating the need for handcrafted features,
wear level. In contrast, the indirect method derives tool wear ~ overcome the bottlenecks of traditional neural networks, such
conditions from sensor signals collected during machining, ~ as gradient vanishing and local minima, and demonstrate
such as machine tool current, power, noise emission signals, ~ significant potential in condition monitoring tasks [8]. Liu et
or vibration signals. Unlike direct monitoring, indirect ~al. [9] established the relationship between acoustic signals
approaches are less intrusive to the machining processand are  and tool wear under various cutting conditions, using
therefore more widely used [1]. Currently, the most widely ~ regression analysis and ANN to predict the degree of tool
applied machine learning methods for tool condition mo-  wear, thereby eliminating the dependency on specific cutting
nitoring include artificial neural networks (ANN), ensemble  parameters. Guo et al. [10] analyzed the correlation between
learning, support vector machines (SVM), Bayesian network  tool wear and the fluctuation trends of milling signals and
classifiers, and Hidden Markov Models (HMM) [2], [3]. In  developed a model linking tool wear with multifractal
addition, convolutional neural networks (CNN) and long parameters, enabling tool wear condition monitoring.
short-term memory (LSTM) networks are among the most ~ Mohanraj T et al. [11] used vibration signals as training data,
commonly used deep learning models for tool wear extracting wavelet coefficients and statistical features, and
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applied various algorithms to classify tool wear states. Shi C
et al. [12] proposed a novel deep learning-based data-driven
modeling framework, in which multiple parallel feature
spaces were constructed to train the model. By integrating
high-level features with tool wear-related characteristics,
their method achieved a classification accuracy exceeding
96 %. Ma M et al. [13] fused vibration and acoustic signals
and introduced a Deep Coupled Restricted Boltzmann
Machine (DCRBM) model. The proposed symmetric
DCRBM outperformed other fusion strategies and
demonstrated excellent performance in tool condition
evaluation. Zhang et al. [14] proposed a compact CNN to
address the overfitting problem caused by the limited number
of fault samples.

The residual neural network (ResNet) model, developed by
Kaiming He, was designed to construct ultra-deep neural
networks that are not affected by the vanishing gradient
problem [15]. ResNet is a conventional feedforward network
architecture with residual connections, where the output of
the L™ layer is defined based on the output of the (L—1)" layer
and the output after performing various operations. These
operations typically include convolution with filters of
different sizes, batch normalization (BN), and the application
of activation functions (e.g., ReLU) to the (L—1)" layer’s
output [16], [17]. ResNet architectures have been developed
with varying depths, such as ResNet-18, ResNet-34, ResNet-
50, ResNet-101, ResNet-152, and even ResNet-1202. The
widely used ResNet-18 consists of 17 convolutional layers
and one fully connected layer at the end of the network.

As indicated by the aforementioned literature, tool wear
state recognition in the field of deep learning is primarily
achieved through CNNs and LSTM networks. However,
CNNs are inherently limited in their ability to fully capture
temporal dependencies within the data, necessitating various
auxiliary processing steps. Conversely, while LSTM
networks can model time-series information, they still suffer
from attenuation of long-range dependencies and are
intrinsically more complex than CNNs, which negatively
impacts computational efficiency. Due to their inadequate
utilization of multi-scale features, conventional neural
network models struggle to accurately capture and distinguish
the subtle variations among different wear regions. This
limitation results in significant misclassifications and
ambiguous boundaries when identifying the various stages of
tool wear. Therefore, this paper proposes a deep residual
connection network model based on stacked convolutional
structures and multi-scale feature extraction modules (Multi-
scale ResNet), aiming to enhance the perception and
extraction capabilities for multi-frequency and multi-scale
features in cutting vibration signals. By incorporating multi-
scale convolutional structures and residual connection
mechanisms, the model maintains the expressive power of
deep-layer features while effectively mitigating the
information loss problem encountered in traditional networks
as depth increases. The proposed model was validated

through cutting experiments on y-TiAl alloys. The results
demonstrate that Multi-scale ResNet achieves higher
accuracy in tool wear state recognition tasks, particularly in
the initial wear and normal wear stages, significantly
reducing misjudgment rates and exhibiting stronger
robustness and practical application value.

2. TOOL WEAR SIGNAL PROCESSING AND FEATURE
EXTRACTING

During the machining process, as cutting time increases,
tool wear progressively intensifies. This wear progression is
typically illustrated by a tool wear curve, as shown in Fig. 1.
The tool wear process can be divided into three distinct
stages: the initial wear stage, the normal wear stage, and the
severe wear stage. Due to highly variable cutting parameters
and complex working conditions in real-world manufacturing
environments, accurately identifying the tool wear state has
become crucial for ensuring machining stability and
maintaining product quality. If the wear condition is not
correctly identified, improper timing of tool replacement may
occur: replacing the tool too early leads to underutilization
and increased production costs, while replacing it too late
may result in decreased machining quality, tool breakage, or
even damage to the machine itself. Such issues significantly
compromise overall processing efficiency and product
quality. Therefore, there is an urgent need to establish an
efficient and reliable tool wear state monitoring system to
achieve real-time and accurate assessment of tool condition
during the machining process. To this end, this paper
proposes a deep neural network structure (Multi-scale
ResNet) based on deep residual connections and stacked
multi-scale feature extraction modules, aiming to fully
exploit the multi-scale and multi-frequency feature infor-
mation in cutting vibration signals, thereby improving the
accuracy and response speed of tool wear state recognition.
The model effectively alleviates information attenuation and
gradient vanishing problems typically found in traditional
deep networks while ensuring deep feature extraction,
providing a feasible technical approach and theoretical
support for real-time tool wear state monitoring.
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Fig. 1. Tool wear curve.
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In this study, cutting tool wear experiments on y-TiAl alloy
were conducted wusing Mitsubishi carbide inserts
CNMG120408-MJ (carbide grade RT9010) on a CKA6150
lathe. The machining parameters were set as follows: cutting
speed v, was 25 m/min, feed rate f was 0.15 mm/r, and depth
of cut a,, was 0.15 mm/r. Vibration signals during the cutting
process were collected using a vibration acquisition system
from Shenzhen Jilanding Intelligent Technology Co., Ltd.
The flank wear of the tool was measured and recorded using
a VHX-700C super-depth 3D microscopy system (Japan),
which is equipped with a 20-2000 x zoom optical lens,
providing a maximum image resolution of 0.5 um, and
employs automatic focusing and extended depth-of-field
(EDF) techniques to obtain the flank wear measurements of
the tool. The experimental equipment used is shown in Fig. 2.

(b)

Tool wear was quantitatively measured using an EDF 3D
microscopic imaging system. The acquired wear data were
subsequently classified into distinct wear states using the
Expectation-Maximization (EM) algorithm. The classifi-
cation results, along with the corresponding time intervals for
each wear stage, are presented in Table 1. This table provides
the measured wear values and associated machining durations
for each stage. In the severe wear stage, tool failure is
indicated by a wear value of +oo.

Table 1. Tool wear status classification.

Tool wear [mm]  Tool wear status Time [min]
[0, 0.0675) Initial wear [0, 9)
[0.0675,0.245)  Normal wear [9, 23.5)
[0.245, +0) Severe wear [23.5, 29]

Fig. 2. Experimental and signal acquisition equipment. (a) Experimental machine tool and cutting test site; (b) Super depth-of-field

microscope, vibration signal acquisition equipment, and test tool.

A. Data preprocessing

During the cutting process, a large volume of raw signal
data is collected from sensors. This data contains information
relevant to tool wear as well as noise and other irrelevant
components. If used directly for recognition by deep learning
models, it may result in excessive computational load and
reduced recognition accuracy. Therefore, it is necessary to
preprocess the low-quality raw data. During cutting, the tool
does not engage with the workpiece during tool entry and
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exit, so no wear occurs at these stages. Thus, in the data
processing stage, signals corresponding to tool entry and exit
should be removed to prevent interference with the mo-
nitoring results. Specifically, the first and last 2.5 % of the
raw data are considered invalid and are excluded, with the
remaining data regarded as effective cutting signals. From
these effective cutting signals, the relatively stable segments
of the cutting process are further extracted as the final valid
data input for the model. The raw signal data processing
procedure is illustrated in Fig. 3.



MEASUREMENT SCIENCE REVIEW, 25, (2026), No. 1, 14-23

Numerical *
control
system

i

Main
shaft
= Spindle Monitor
vibration data ‘
— =
| —— . l
L] Accelerometer  Data acquisition
) and processing unit _
Workpiece
I Data
processing
Tool feed Tool return
Frass TR,
| | | |
| M., 1 :

Fig. 3. Data collection and preprocessing.

B. Time-frequency domain feature extraction

Time-domain or frequency-domain analysis methods are
suitable for processing stationary signals, but they can extract
feature information only from either the time or frequency
domain. However, the signals obtained during the cutting
process are often non-stationary. Therefore, this study adopts
an EDF 3D microscopic imaging system to transform the
time-series data into images, enabling a joint representation
of both time and frequency characteristics. These images
effectively capture the dynamic patterns of the signal over
time. Subsequently, a deep learning model is constructed to
extract features from the images and achieve accurate
recognition of tool wear states.

To ensure that the time-frequency representations capture
all relevant dynamic components of the cutting process, the
vibration signals were sampled at 20 kHz. This sampling rate
has been widely adopted in previous studies. According to the
Nyquist criterion, the sampling rate should be at least twice
the highest frequency present in the signal to avoid aliasing.
Preliminary experiments were also conducted to compare
different sampling rates (10 kHz, 20 kHz, and 40 kHz), and
the results showed that 20 kHz adequately preserves the
frequency components related to tool wear while keeping the
data volume and computational load manageable.

Common time-frequency analysis (TFA) methods include
the Fourier Transform [18], continuous wavelet transform
(CWT) [19], and Wigner—Ville Distribution [20]. These
methods can generate time-frequency representations of
signals. However, when analyzing signals with multiple
frequency components, the Wigner—Ville Distribution, as
a quadratic transform, may experience  cross-term
interference. The Fourier Transform, on the other hand, uses
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constant sampling intervals in both the time and frequency
domains, which limits its ability to adjust the transformation
window size according to frequency variations. In contrast,
the CWT overcomes the resolution limitations of the Fourier
Transform by providing multi-resolution representations,
making it especially suitable for analyzing complex time-
series signals. Therefore, in this section, the CWT is used to
convert the preprocessed vibration signals into 22 x 224 x 3
time-frequency images, as shown in Fig. 4.

Let the signal collected during the cutting process be x(t).
The CWT of x(t) is expressed as:

t—1

wrees) = | Zx(t) Y0 de = % | Zx(t) pis () e

N

)

where Y (t) is the wavelet basis function, and 7, s are the
translation and scaling coefficients.

On the time axis, the wavelet is shifted by the translation
coefficient T and convolved with the target signal, enabling
extraction of the signal's temporal dependencies. In terms of
frequency, the length and frequency of the wavelet are
adjusted by the parameters. The window length changes
synchronously with the wavelet length, giving wavelet
analysis multi-resolution properties. This approach allows for
finer capture of the signal's temporal variations when
processing high-frequency components and more accurate
distinction of the signal's frequency characteristics when
handling low-frequency components. Compared to the short-
time Fourier Transform (STFT), this method is better suited
for capturing transient changes in non-stationary signals.
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Fig. 4. The vibration signals and their CWT at different stages of tool wear.

3. DEEP LEARNING-BASED TOOL WEAR CONDITION
MONITORING

The concept of multi-scale feature extraction originates
from the human visual system's ability to distinguish objects
at various scales. In image processing, multi-scale
convolution helps capture both local and global information.
In time-frequency images, different scale convolution kernels
can detect vibration patterns at different frequency bands. On
the other hand, the introduction of ResNet addresses the
gradient degradation problem in deep networks and allows
information to be transmitted across different layers, enabling
the construction of more complex nonlinear mappings.
Therefore, this paper embeds the multi-scale convolution
structure into the residual blocks of ResNet to enhance the
model's feature perception range and improve the network's
ability to distinguish differences in vibration images under
different wear states.

The ResNet network, with its designed residual
connections, effectively addresses the problems of gradient
vanishing and gradient explosion in deep learning models
[15]. Residual connections enable the network to transmit
information directly across multiple layers, helping to capture
features at different levels. This cross-layer feature
transmission enhances the network's perception and
representation capabilities. Therefore, ResNet is selected as

the base model for deep learning. However, the residual
structure of ResNet focuses only on feature extraction at
a single scale, which may cause the model to overly focus on
certain parts of the sensor signal while neglecting other
important information. To address this, this paper
incorporates a multi-scale feature extraction module based on
ResNet to improve the model's ability to extract multi-scale
features. Experimental results show that the proposed model
outperforms traditional methods.

A. Residual block network

ResNet is a significant milestone in the development of
convolutional neural networks. In ResNet, a residual block
contains a skip connection, allowing the neural network to
directly learn the residual, i.e., the difference between the
input and the desired output, as shown in Fig. 5. This design
facilitates easier information flow within the network and
effectively addresses the gradient vanishing and degradation
issues that occur as network depth increases. The calculation
formula for the residual block is as follows:

y=Fx{W} +x )
where x and y represent the input and output vectors, and
F(x,{W;}) denotes the residual mapping to be learned.
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Fig. 5. Basic block in ResNet network.

B. Multi-scale feature extraction module

The original residual structure is insufficient for effectively
extracting the multi-scale features of vibration signals. In
contrast, the multi-scale feature extraction module enhances
the representation of multi-scale features by constructing
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hierarchical residual connections within a single residual
block, thereby expanding the receptive field of each network
layer. This significantly improves the model’s ability to
capture complex signals in time-frequency images and better
extract features across different frequencies and time
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domains. The multi-scale feature extraction module replaces
a single 3 x 3 filter group with multiple smaller filter groups
to achieve this effect. This module first applies a 1x1
convolution to the input feature map, uniformly dividing it
into s feature subsets, denoted as x;, where i € {1,2,...,s}.
Each feature subset x; has the same spatial resolution as the
original feature map but only 1/s of the channels. Except for
x;, each x; is associated with a 3 x 3 convolution kernel,
denoted as K;(), with its output represented as y;. Before
being input to K;(), each x; is added to the output of the
previous layer y;_; to enable cross-layer feature fusion. To
increase the number of feature subsets while reducing the
number of parameters, the 3 x 3 convolution for x, is omitted.
Therefore, the output y; can be expressed as:

X i= 1,
yi =1 Ki(x) i =2 (3)
Kl-(xl- + yi_l) 2<i< S,

C. Framework for tool wear state recognition

First, the sensor vibration signal data is preprocessed to
remove outliers and eliminate segments corresponding to tool
entry and exit. The processed vibration signals are then
transformed into time-frequency representations using CWT,
enabling the extraction of time-domain features. The
resulting time-frequency images are subsequently divided
into training and validation sets in a 7:3 ratio. Finally, the
constructed convolutional neural network, Multi-scale
ResNet, is used to recognize tool wear conditions, as shown
in Fig. 6.
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Fig. 6. Overall framework of the proposed methodology.

D. A Multi-scale resnet-based approach for tool wear
condition recognition

The time-frequency images obtained through CWT are
first uniformly resized to RGB images with dimensions of
224 x 224 x 3, where 224 x 224 denotes the spatial re-
solution and 3 represents the three color channels. These
images are then input into the model, sequentially passing
through the Stem layer, the ResNet module, the multi-scale
feature extraction module (Multi-scale ResNet), and the
feature reduction layer (Reduction Layer). In the Stem layer,
the input image first passes through a 7 x 7 convolutional
layer, followed by BN and a ReLU activation function for
initial feature extraction. This is followed by a max pooling
layer to reduce the spatial dimensions of the feature maps.
Next, the feature maps are fed into the backbone ResNet
network, which consists of multiple residual units (Basic
Blocks), which further extract high-level semantic features.
Each residual unit contains two 3 x 3 convolutional layers

connected by a shortcut to enable residual learning,
enhancing training stability and generalization performance.
After the third residual stage (Layer 3), a multi-scale feature
fusion module (Multi-scale Layer) is introduced. This module
uses a parallel architecture to extract features at multiple
receptive field scales. It integrates local and global
information through multiple convolutional paths, including
1 x 1 convolutions, 3 x 3 convolutions, and dilated convo-
lutions. The outputs from these branches are concatenated
along the channel dimension to fuse multi-scale features,
effectively enhancing the model’s ability to represent the di-
verse characteristics of tool wear. After feature fusion, a glo-
bal average pooling layer compresses the 2D feature maps
into a 1D vector, which is further mapped into a 128-dimen-
sional feature representation via a dimensionality reduction
layer. Finally, this feature vector is fed into a fully connected
layer and classified into different tool wear categories using
the Softmax activation function, as shown in Fig. 7.
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4. MODEL TRAINING AND DATA VISUALIZATION

In this study, model training and validation were performed
on a workstation equipped with an Nvidia GeForce A6000
GPU and running Windows 11. The training environment
used PyCharm 2023.3.1 and PyTorch 2.1.0+cul18. A mini-
batch training strategy was adopted, and the learning rate was
dynamically adjusted during training using a Warmup sche-
dule followed by a cosine annealing strategy. The AdamW
optimizer was used for iterative optimization of the model
parameters, with a weight decay term included to mitigate
overfitting. The learning rate was set to 0.0002, with cosine
annealing applied for learning rate scheduling, iterating every
50 epochs. The Adam optimizer was used to update the loss
function during training. The maximum number of iterations
for model training was set to 100, with a batch size of 128.
The input to the Multi-scale ResNet model consists of time-
frequency images representing tool wear features, obtained
through CWT. The model output corresponds to three tool
wear states, so the Softmax function was used for multi-class
classification, with the following expression:

vi
Softmax =

(4)

jore”
where k denotes the number of neural network outputs; v is
the output vector; i denotes the category of cutting tool wear;
v; is the j™ category value in the output vector v.
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Fig. 7. Overview of a Multi-scale ResNet-based model for tool wear condition recognition.
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To evaluate the performance difference between Multi-
scale ResNet and other models, the prediction results of the
classification model were compared with the true results by
calculating the numbers of true positives (TP), false positives
(FP), false negatives (FN), and true negatives (TN).
Commonly used evaluation metrics such as Confusion
matrix, Recall, Precision, F1score, and Accuracy were
calculated using these values, as shown in (5-8):

TP
- 5
Recall TP+ FN 5)
TP
Precision TP L TP (6)
1 _ 2 X Recall X Precision %
score = Recall + Precision
TP +TN
Accuracy = €))

TP+FP+FN+TN

A. Results and discussion

The model was trained using 70 % of the dataset as the
training set, while 30 % was used as the validation set to
assess the model's effectiveness. In this study, model
performance was evaluated using accuracy, recall, precision,
and F1 scores, as shown in Table 2.
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Table 2 presents the performance evaluation metrics of the
model after training, based on 10 training runs. These metrics
include accuracy, recall, and precision for different stages of
tool wear. The data show that the Multi-scale ResNet model
achieves significant improvements in both the Initial wear
and Normal wear stages. Data visualization indicates that the
average accuracy, recall, and F1 score of the Multi-scale
ResNet model are 2.9 %, 1.6 %, and 2.4 % higher, res-
pectively, than those of the CNN-SVM model. Compared to
the Transformer model, the Multi-scale ResNet model
outperforms it by 6.1 %, 6.3 %, and 6.2 %, and by 3.4 %,
4.4 %, and 4.0 % compared to the ResNet model.

From Table 2 and the Confusion matrix shown in Fig. 8, it
is clear that most misclassifications occur in the initial wear
and normal wear stages. This is because the feature maps of
normal wear include characteristics from both the initial wear
and rapid wear stages, which significantly impact the model's
recognition accuracy. In most machining scenarios, it is

recommended to replace the cutting tool before severe wear
occurs. This requires the model to have higher accuracy in
recognizing rapid tool wear. The Multi-scale ResNet model,
through its multi-scale feature extraction module, effectively
leverages vibration signal features related to tool wear,
helping the model better distinguish between initial wear and
normal wear.

Fig. 9 shows the classification results of four models:
Multi-scale ResNet, CNN-SVM, Transformer, and ResNet.
In the figure, the green line represents initial wear, the yellow
line represents normal wear, the red line represents severe
wear, and the blue line represents the model's predicted
results. By observing the chart, it is evident that all four
models perform well in distinguishing severe wear. However,
when identifying initial wear and normal wear, they often
make misclassifications. In contrast, the Multi-scale ResNet
model significantly reduces misclassifications between these
two stages, improving the model's recognition accuracy.

Table 2. Comparison of experimental results with other models.

Models Accuracy [%] Recall [%]  Precision [%] F1 score [%)]

CNN-SVMPBI Initial wear - 90.9 83.3 87.0
Normal wear -- 86.8 93.9 90.2
Severe wear -- 100.0 95.5 97.7
Average 90.6 92.6 90.9 91.6

Transformerf€l Initial wear -- 78.8 76.4 77.6
Normal wear -- 84.9 86.5 85.7
Severe wear -- 100.0 100.0 100.0
Average 86.0 87.9 87.7 87.8

ResNet Initial wear -- 78.8 83.8 81.3
Normal wear -- 90.6 87.3 88.9
Severe wear -- 100.0 100.0 100.0
Average 88.8 89.8 90.4 90.0

Multi-scale ResNet Initial wear -- 90.0 87.1 88.5
Normal wear -- 92.4 94.2 93.3
Severe wear -- 100.0 100.0 100.0
Average 93.3 94.2 93.8 94.0

Initial Normal Severe Initial Normal Sevee Initial Normal  Severe Initial Normal Severe

9.1% 0% 20.8% 0%

Initial
Initial

Actual state
Normal

Actual state
Normal

Severe
Severe

Predicted state
(b)
Fig. 8. Confusion matrix (2) CNN-SVM; (b) Transformer; (c) ResNet; (d) Multi-scale ResNet.
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Fig. 9. Recognition results of the four models.

5. CONCLUSION

In this study, cutting vibration signals related to tool wear
were obtained through y-TiAl alloy cutting experiments, and
a deep learning model was constructed to identify and predict
tool wear states. The main conclusions are as follows:

1. This paper proposes a tool wear state recognition model
based on Multi-scale ResNet, which more accurately
captures multi-scale features in vibration signals,
thereby improving the accuracy of tool wear state
identification.

. The proposed model integrates a multi-scale feature
extraction module with a deep residual connection
network, effectively addressing issues such as vanishing
gradients, exploding gradients, and insufficient feature
extraction capabilities in deep learning models.

. Based on the y-TiAl alloy cutting experiment results, the
Multi-scale ResNet model proposed in this paper
outperforms traditional CNN-SVM, Transformer, and
ResNet models in recognition accuracy during the initial
wear and normal wear stages. The model achieves
a prediction accuracy of 93.8 %, a recall of 94.2 %, and
an F1 score of 94 %, with an average accuracy of
93.3 %. This model provides an effective solution for
real-time monitoring and intelligent recognition of tool
wear states, helping to improve the efficiency and
quality of cutting processes and promoting the
intelligent development of production processes.

. Future research will focus on enhancing the model’s
generalization capability across multiple cutting
conditions and various tool types, incorporating transfer
learning and related techniques to ensure reliable

22

recognition under diverse machining scenarios. To meet
the requirements of real-time monitoring and embedded
deployment, efforts will be made to advance model
lightweighting and edge-side adaptation through
network architecture optimization, pruning, and quan-
tization, aiming to achieve higher generalizability,
stronger robustness, and improved real-time performan-
ce, thereby expanding the model’s practical applicability
in industrial production.
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