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Abstract: Accurately characterising datasets is crucial for effective statistical modelling, particularly when analysing Global Navigation
Satellite System (GNSS) data. While traditional approaches often assume a Gaussian distribution, real-world GNSS datasets frequently
exhibit heavy-tailed and skewed properties, prompting the need to explore alternative statistical models. The study examines the suitability
of non-Gaussian distributions, specifically the Laplace, skew-normal, skew-#, and generalised hyperbolic (GH) distributions, for modelling
GNSS data obtained from a stationary receiver. Using empirical GNSS datasets, we estimate parameters within confidence intervals (CIs)
through weighted maximum likelihood estimation (WMLE). Model performance is assessed using log-likelihood analysis, Akaike Infor-
mation Criterion (AIC), Bayesian Information Criterion (BIC), and root mean squared error (RMSE). Our comparative analysis shows
that heavy-tailed and skewed distributions, particularly those offering greater flexibility in capturing extreme deviations, consistently out-
perform the conventional normal distribution. Among the non-Gaussian models considered, the GH distribution provides the best overall
performance. These results emphasise the importance of selecting appropriate statistical models to improve uncertainty quantification in
GNSS-based measurements.

Keywords: non-Gaussian, weighted maximum likelihood estimation, generalised hyperbolic distribution, goodness-of-fit test, uncertainty
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1. INTRODUCTION differential troposphere error, and ionospheric gradients [6].
To address these errors, the study proposed modelling the to-
tal pseudo-range error distribution by combining the probabil-
ity density functions of individual error sources, moving be-
yond classical Gaussian assumptions. As GNSS errors orig-
inate from various sources, modelling their total impact re-
quires alternative statistical approaches. The application of
non-classical error theory of measurements (NETM) was pro-
posed to better handle these deviations, particularly for large
datasets (n > 500) [7]. In urban environments, GNSS po-
sitioning performance is affected by outlier measurements,
including multipath effects and non-line-of-sight (NLOS) re-
ceptions.

These outliers present a significant challenge in GNSS

Accurately characterising datasets is essential for effective
statistical modelling, particularly when dealing with asym-
metric and heavy-tailed data samples. Global Navigation
Satellite System (GNSS) latitude data are examples of such
samples [1]. GNSS is a satellite constellation that provides
signals from space, transmitting positioning and timing data
to receivers on Earth [2]. This system includes GPS (USA),
GLONASS (Russia), Galileo (Europe), and BeiDou (China)
[3]. It is essential for applications such as navigation, sur-
veying, mapping, and scientific research, where precise lo-
cation data are required. However, GNSS positioning errors
arise from multiple sources, including ionospheric and tro-
pospheric delays, satellite clock drift, multipath interference, modelling. To address these effects, Wen ef al. [8] proposed a
and receiver noise [4]. To account for these errors, classi- graduated non-convexity factor graph optimisation technique,
cal statistical models often assume a Gaussian distribution  hich effectively reduced the impact of outliers and improved
of positioning errors. However, empirical studies have re-  positioning accuracy. In addition to outlier mitigation, en-
vealed deviations from normality, suggesting that errors ex-  hancing state estimation under non-Gaussian noise conditions
hibit heavy-tailed and skewed characteristics [5]. These devi-  has also been a key research focus. Raitoharju et al. [9] in-
ations challenge conventional error modelling approaches and  troduced an algorithm that integrates empirical noise models
highlight the need for alternative probability distributions that  jnto Kalman filtering, enabling improved estimation accuracy
better capture the statistical properties of positioning errors. in scenarios where Gaussian assumptions fail. This approach

Residual pseudorange errors in single-frequency differen- improved estimation accuracy by incorporating non-Gaussian

tial GNSS systems arise from sources such as signal mul-  noise characteristics, making it particularly useful when mea-
tipath, increased receiver noise due to interference, residual  surement errors deviate from Gaussian assumptions.
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Although methods such as Kalman filtering can improve
state estimation, selecting an appropriate statistical distribu-
tion remains a critical challenge. Several studies have ex-
amined the suitability of alternative distributions, including
Cauchy, Student’s t, Laplace, lognormal, and skew-normal,
for data fitting and modelling applications. For example, Sun-
Yong Choi ef al. [10] applied twelve different distributions,
including Cauchy, Laplace, normal, and Student’s t, to model
stock index returns, using information criteria and goodness-
of-fit tests to identify the best-fit distribution. Alzaatreh er
al. [11] proposes a family of generalised Cauchy distribu-
tions, denoted as T-Cauchy(Y), using the T-(RY) framework.
This family is generated using the quantile functions of uni-
form, exponential, log-logistic, logistic, extreme value, and
Fréchet distributions. It provides a flexible approach for mod-
elling heavy-tailed data, demonstrating greater adaptability
than classical Gaussian models. Aryal et al. [12] investigated
the Laplace probability distribution and its derivatives, focus-
ing on their applicability in modelling real-world problems.
The study highlights the growing interest in constructing flex-
ible parametric classes of probability distributions and exam-
ines how the Laplace distribution and its variants have been
widely applied in statistical modelling.

Building on these findings, this study systematically evalu-
ates the suitability of non-Gaussian distributions, including
the Laplace, skew-normal, skew-t, and generalised hyper-
bolic (GH) distributions, for modelling GNSS latitude data
from a stationary receiver. These models are applied us-
ing weighted maximum likelihood estimation (WMLE) to
achieve robust parameter estimation and confidence interval
(CI) construction.

The novelty of this work lies in developing a unified
statistical framework that combines empirical GNSS data
with non-Gaussian modelling and WMLE-based estimation
to quantify measurement uncertainty more accurately under
real-world, heavy-tailed conditions. This approach moves be-
yond the classical Gaussian assumption, providing a com-
parative evaluation of flexible asymmetric distributions us-
ing multiple goodness-of-fit criteria such as log-likelihood,
Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), and root mean squared error (RMSE).

The added value of this study lies in its direct applica-
tion of metrological principles from the Guide to the Expres-
sion of Uncertainty in Measurement (GUM) and the Interna-
tional Vocabulary of Metrology (VIM) to non-Gaussian error
modelling. This enhances the statistical reliability and inter-
pretability of GNSS uncertainty assessment, bridging the gap
between theoretical distribution fitting and practical measure-
ment evaluation.

To achieve this, we analyse empirical GNSS latitude
datasets and employ rigorous statistical methodologies for
model evaluation. The rest of this paper is structured as fol-
lows: Section 2 describes the methods and materials used in
our research. Section 3 details the selected synthetic data dis-
tribution; Section 4 presents goodness-of-fit tests to compare
the selected models; Section 5 presents the results and discus-
sion; and Section 6 provides the conclusion.
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2.
A. Laplace distribution

SYNTHETIC DATA DISTRIBUTIONS

The Laplace distribution is a continuous probability distri-
bution characterised by a sharp peak at the mean and heavier
tails than the normal distribution [13]. It can be derived as
the difference between two independent exponential distribu-
tions:

X =E|—E), E|,E;~exp(A).

The probability density function (PDF) of the Laplace dis-
tribution is [14]

1

_ bi—#ol
= —e¢ c
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f(xis to, 0) ey
where U is the location parameter and ¢ is the scale parame-
ter, which must be strictly positive (¢ > 0), and x; is the data
point. The Laplace distribution has a variance of 262 and
exhibits exponentially decaying tails, which are heavier than
those of the normal distribution but lighter than those of the
Cauchy distribution. The Cauchy distribution is a continuous
probability distribution characterised by its location parame-
ter (mean) Yo and scale parameter o [15].

B. Skew-normal distribution

The skew-normal distribution extends the normal distribu-
tion by introducing a shape parameter () to control skew-
ness. It is defined by three parameters: location (o), which
controls the centre of distributions; scale (o), which deter-
mines the spread; and shape (&) [16]. This distribution is
constructed by multiplying the normal PDF by a transforma-
tion of its cumulative distribution function (CDF). A random
variable X follows a skew-normal distribution if X = g+ 0 Z,
where Z follows a standard skew-normal distribution. Thus,
the skew-normal PDF is given by

J(xi) =20 (xi) P (o), )
where the standard normal PDF is
o(x) = J%Te"‘fz/z 3)
and the standard normal CDF is
®(x) :/x o(t)dt = [1+erf<)ci)}, )
. 2 V2

where erf (error function) is defined in [6]. For a general
skew-normal distribution with Ly and o, we standardise the
variable x; as
Xi — Ho
I=—.
c

®)

Substituting (5) into (2), the general skew-normal PDF is
Xi —
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C. Generalised hyperbolic distribution

It is a flexible class of continuous probability distributions
capable of modelling heavy tails and skewness. It includes
many other distributions as special cases, such as the normal,
Laplace, hyperbolic, variance gamma, and normal-inverse
Gaussian (NIG) distributions [17]. The key distinction be-
tween the GH distribution and the standard hyperbolic distri-
bution is the inclusion of the index parameters ¢, resulting
in a five-parameter family (o, A, B, o, and u). The PDF of
the GH distribution arises from the expression of X as a nor-
mal mean-variance mixture, where the mixing distribution is
a generalised inverse Gaussian (GIG)

X|W=w~ A (+Bw,wa?), (7

where W is a positive mixing variable distributed as the GIG,
and where ¥ > 0 is another scale-like parameter

W ~ GIG (o, 62,7%) ®)
with the PDF
o 1 2
Sww) = Z(Ig(ogwwalexp (—2 <Ov-v —H/Zw)) , w>0
(©))

XNGH((X,A,,IS,G,‘U,),

where the parameters are: o € R (shape), A > 0 (tail heav-
iness), the |B| < A controls skewness, and it satisfies the
constraint, ¢ > 0 (scale), and pt € R (location). In the one-
dimensional case, the GH distribution has the following PDF

fx (i, A, B,o,p) =a(a, A, B, o). expPi—H)

Ky (WG )

2>(1/2—a) '

(x,-ER)
(Voo +G—n)

(10)

where a(o,A,B,0) is a norming constant, Kq(-) is the

modified Bessel function of the third kind (see [18]), and
a(a, A, B, o) is a norming constant given by

(Azfﬁz)aﬁ
V2r e 2Ky (0 /22— B7)

Overall, the GH has the following PDF after substituting
(11) into (10)

a(a,A,B,0)=

Y

(2'2 _ﬁZ)D‘/z
V?%l“*”zKa<oVﬂifiB7)
o) (1)

(vVorrtm—np) "

fx(xizo, A, B o,u) =

P (xi—p)

(12)

D. Skew-t distribution

It is an extension of the Student’s t-distribution that al-
lows for skewness as well as heavy tails. The Student’s t-
distribution models the sample mean of a normally distributed
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population when the sample size is small and the standard de-
viation is unknown [19]. The skew-¢ distribution is useful
for modelling asymmetric data with outliers or heavy-tailed
behaviour [20]. Its distribution arises from a normal mean-
variance mixture. The random variables ¥ and X are then
defined as follows

Y:ﬁ|Z|+%'Z (13)
and
X=u+o- Y (14)
VIV

where: Z ~ .#(0,1) is a standard normal variable, V ~ x2 is
a chi-squared variable with v degrees of freedom, § € (—1,1)
is the skewness parameter, and (t and ¢ > 0 are the location
and scale parameters. The distribution of X is skewed and
heavy-tailed and is called the skew-¢ distribution. Its overall
PDF is

2 Xi—
f(xi;:uvcvaav)zc'tv< G‘LL>'TV+1

a.xi—u. v+1 . (15)

o v ()

E. Justification for the choice distributions

The Laplace, skew-normal, skew-¢, and GH distributions
were selected for their complementary ability to represent key
non-Gaussian characteristics commonly observed in GNSS
data, namely asymmetry, heavy tails, and excess kurtosis.
The Laplace model serves as a simple reference with moder-
ate tail behaviour, while the skew-normal introduces a shape
parameter to accommodate data asymmetry. The skew-t ex-
tends this flexibility by modelling both skewness and pro-
nounced tail heaviness. The GH distribution provides the
most general framework, encompassing several of these mod-
els as special cases and offering superior adaptability for com-
plex GNSS error structures.

Together, these distributions form a progressive hierarchy
from simple to highly flexible models, enabling a system-
atic evaluation of non-Gaussian behaviour in GNSS mea-
surements. Broader generalisations, such as the generalised
alpha-skew-t, variance gamma, or NIG distributions, could
further enhance modelling accuracy by offering additional
control over tail behaviour and asymmetry, and are recom-
mended for future investigation.

3. GOODNESS-OF-FIT TESTS

A goodness-of-fit test is a statistical method used to de-
termine how well a set of observed data matches a specific
theoretical distribution or model [21].

To evaluate the suitability of various statistical models for
GNSS data, it is essential to consider distributions capable
of capturing asymmetry and heavy tails. Among the candi-
date models are the Laplace, skew-normal, GH, and skew-
t distributions, each offering different levels of flexibility in
representing real-world data characteristics. Parameter es-
timation for these distributions is typically performed using
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the WMLE method. This is a modified form of maximum
likelihood estimation (MLE) that applies weights to reduce
bias, particularly for individuals with extreme response pat-
terns [22]. The estimated parameter vector 8* is defined as
n
6" = argmax Y w;log.# (60 | x;), 16
s Y. wilox £(6 | x) (16)
where:
* 0 is the vector of parameters to be estimated,
* x; is the i-th data point,
* w; is the weight assigned to x;, satisfying Y1 | w; = 1,
o £(6 ] x;) is the likelihood of observing x; given param-
eters of 6.
This approach provides robust parameter estimates and en-
ables the construction of 95 % ClIs for the fitted models. Cls
are determined using the percentile method, which relies on

the quantiles of the fitted distribution. The general formula
for the Cl is given by [23]

Cl= [F’l(a,params),F’I(l—a,params)], (17)

where F~!(c,params) and F~!(1 — «,params) correspond
to the lower and upper quantile functions (percent-point func-
tion, PPF) of the fitted distribution. The confidence level is set
at 95 %, leading to the following values for o, which repre-
sents the significance level used to determine the probability
of the CI not capturing the true parameter. In a two-tailed
CI, the total significance level ¢ is symmetrically divided be-
tween the two tails of the distribution. This means each tail
contains a probability of §

1 — confidence level
%: con ;"CG VY —0.025 (fora 95 % CI),
o

-2 =0975.
2

In this study, the constructed CIs correspond to the ex-
pected range of the measured quantity (GNSS latitude) as
represented by each fitted distribution. Thus, the intervals in-
dicate the range within which the true value of the measurand
is expected to lie with a 95 % confidence level.

To evaluate the adequacy of statistical models in represent-
ing GNSS error distributions, various goodness-of-fit met-
rics are employed. These include the log-likelihood, AIC,
BIC, and RMSE. Together, these measures provide a rigorous
framework for identifying the most appropriate distributional
model.

A. Log-likelihood function (£)

The log-likelihood function is a tool for evaluating how
well a probability distribution fits the observed data. It quan-
tifies the data compatibility with the assumed model by sum-
ming the logarithms of the PDF values at each observation.
Higher values indicate a better fit.

For n independent observations X = {xi,x2,...,x,} and
a PDF f(x | 0), the log-likelihood is defined as [24]
LX) = Zlnfx,\e (18)
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where 0 represents the estimated parameters of the distribu-
tion, 7 is the number of data points, and f(x; | ) is the PDF
evaluated at x;. Equations (19-23) are obtained by substitut-
ing the respective model distribution expressions into (18) to
derive the log-likelihood function for each distribution. Start-
ing with the Laplace distribution (1) substituted into (18), the
log-likelihood function is

2L (Mo, 0) =
(19)

The log-likelihood function of the skew-normal distribu-
tion is

L (o, 0,0) =[] f(xi | to,0,). (20)
i=1

After substituting (6) into (18), the log-likelihood function

is
(10,0, 0) = H ¢( ) (ax;“o> @1)

taking the logarithm of (21) yields the log-likelihood function

o 21 20 (222 ) (10
(=)
(252) e

By substituting (12) into (18), the log-likelihood function
of the GH distribution is as follows
|:Oc ! ) logA

. 2_pg2)_ (a—i
—log (\/ﬁ) —logKyg (c\/ﬁ)
+logK, 1 (WW)

1

Xi — Ho

= nlogZ—nlogG—i—Zlog(])
i=1

+ilog<l>
i=1

n

)}

i=1

log"g(a72’7ﬁ7cau’): 710g(;{’

(2 e (o)
+B(xi— H)} : (23)
Substituting the skew-r PDF (15) into (18), the for log-
likelihood is
InZ(u,o,a,v) :gi [ln (%) +Inzy (xi;#) +1InTy
= v+v(;:“)2 24)
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B. Akaike Information Criterion (AIC)

The AIC is a widely used metric for model selection, bal-
ancing goodness-of-fit with model complexity and fit quality.
It is defined as [25]:

AIC = —2.%(0) + 2k, 25)

where k denotes the number of parameters in the model.
For the Laplace distribution, which has (k = 2), the AIC is
given by AIC = —2.%(0) + 2 -2, making it directly compa-
rable based on log-likelihood values. Similarly, the skew-
normal and skew-7 distributions, each with three parameters
(k= 3), have AIC values expressed as AIC = —-2.2(0)+2-3.
The AIC for the GH distribution is calculated as AIC =
—2.7(6)+2-5, where 5 represents the number of estimated
parameters. A lower AIC indicates a better-fitting model with
minimal complexity.

C. Bayesian Information Complexity (BIC)

The BIC is a model selection tool that imposes a stronger
penalty on model complexity than the AIC. The BIC is de-
fined as [26]

BIC = —2.%(6) +kIn(n). (26)

The penalty term k1In(n) ensures that the BIC strongly dis-
courages overfitting, especially for large datasets.

The Laplace distribution is characterised by two parame-
ters (k = 2). Based on (25), the corresponding BIC values are
calculated using the formula: BIC = —2.2(0) +2-In(n).

Similarly, the skew-normal and skew-¢ distributions each
involve three parameters (k = 3). According to (25), their
BIC values are computed as: BIC = —2.2(0) + 3 -In(n).

The GH distribution involves five parameters (k = 5) and
BIC is expressed as: BIC = —2.2(0) + 5 -In(n). A lower
BIC indicates a better model fit while imposing a stronger
penalty on model complexity than the AIC, thereby helping
to prevent overfitting.

D. Root Mean Squared Error (RMSE)

RMSE is a widely used metric for quantifying the accu-
racy of a model or estimator by measuring the average devia-
tion between observed and predicted values. By squaring the
differences, RMSE penalises larger errors more heavily, pro-
viding a sensitive measure of overall fit [27]. It is particularly
useful for comparing multiple models or candidate distribu-
tions in terms of their ability to represent the observed data.
In our GPS latitude data analysis, we use RMSE to evalu-
ate how closely each fitted probability distribution aligns with
the observed measurements, thereby establishing a quantita-
tive basis for comparing model performance. Formally, for
a set of n observed values y; and corresponding fitted values
yi derived from a candidate distribution, RMSE is defined as

RMSE =

-

(vi —31)?, 27

S| =

i=1

where y; denotes the observed GPS latitude values, (J;) rep-
resents the predicted or sampled values from the fitted dis-
tribution, and (y; — §;) indicates the residual (error) for each
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observation. A lower RMSE indicates better model accuracy
(small average error), while a higher value suggests larger de-
viations between the predictions and the actual values.

The RMSE for the Laplace distribution with mean p and
variance 267 can be directly computed as

RMSE = /262 + (5 — o).

For the skew-normal distribution with mean

ac?
(a—1)%(a-2)

2 2
RMSE\/W_IO‘)ZG(“_Z)+<9$> a>2 (29)

(28)

oo

o—7 and vari-

ance ,1tis

and undefined for o < 2.
For the GH distribution with parameters &, A, 3, o, and u,
the mean and variance are

Kan(o/A2-BY) B
Kaloy/A2—B2) VAZ— B

where Ky (+) is the modified Bessel function of the third kind.
The variance of the GH distribution is given by

Kd+4(0\/17tj37)*_Kh+z(6\/17ifﬁf)
Ku(o/A2=B2)  Ka(o\/A?—B?)

(Kani(o V=B
Ko(o\/A% —B2) .
(3D
RMSE = \/Var(Y) +(F-E[Y)*~

(30)

EY]=p+o

Var(Y) = o2

Then, the RMSE is

(32)

For a skew-t distribution with location parameter (i, scale
o, skewness A, and degrees of freedom v, the mean and vari-
ance (for v > 2 and v > 4, respectively) are given by

v T'(%)
E[Y] = 8¢/~ 2 33
Y]=u+o 7 T (33)
2
) vV o vV F(vgl)
Var(Y) = o v 5 - (F(g) N E)
__ A :
where § = - The RMSE is defined as

RMSE = \/Var(Y) +@-E[¥)> (35)

The presented formulas [(28), (29), (32), and (35)] explic-
itly define how the RMSE values were computed for each
fitted distribution. Each expression corresponds to the RMSE
calculation applied to a specific model, quantifying the av-
erage squared deviation between the observed GPS latitude
data and the values predicted by the fitted distribution. These
computed RMSE values are reported in Table 1, allowing di-
rect comparison of the fitting accuracy among the candidate
distributions.
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4. MATERIALS AND METHODS

To collect GNSS sample data, we deployed an L76k GPS
module at a fixed outdoor location. This module, known for
its compact design and high positioning accuracy, was con-
nected to a Raspberry Pi, which served as the control sys-
tem. The Raspberry Pi handled module configuration, data
logging, and real-time monitoring, ensuring continuous and
reliable data collection throughout the experiment.

During 72 hours of continuous operation, the GPS mod-
ule recorded 1303376 rows of National Marine Electronics
Association (NMEA) sentences. These included various sen-
tence types such as:

* SGPRMC: Recommended Minimum Specific GNSS

data,

* SGPGGA: Global Positioning System fix data,

* $SGPGLL: Geographic Position Latitude / Longitude,

* SGPVTG: Track made good and ground speed,

¢ SGPGSA: GNSS DOP and Active Satellites,

* SGPGSV: GNSS Satellites in View.

From this dataset, 162922 $GPRMC sentences were ex-
tracted for further analysis. These sentences were selected
because they include essential positional and signal quality
parameters such as fix quality, satellite count, horizontal di-
lution of precision (HDOP), and latitude / longitude coordi-
nates. Python scripts were used to efficiently filter, parse, and
structure the extracted data into a log file.

The GNSS latitude data distribution was first characterised
before fitting multiple non-Gaussian distributions (Laplace,
skew-normal, skew-t, and GH). Parameter estimation and CIs
for each distribution were determined using WMLE to evalu-
ate measurement reliability and quantify uncertainty. In addi-
tion, model performance was assessed using log-likelihood,
AIC, BIC, and RMSE.

5. RESULTS AND DISCUSSION

Fig. 1 presents the PDF and CDF for the latitude data, com-
pared with four fitted distributions using WMLE: Laplace,
skew-normal, GH, and skew-z. For numerical consistency,
the latitude values were normalised by subtracting the ref-
erence latitude of 50.28000° N, so the values reported in Ta-

/'\ Latitude data
5000 Ha Laplace
_I \ == Skew-normal
I -= GH
4000 - ,"\-’ i — -+ Skew-t (GH)
[
[ A
23000 -
A\ |
o 5,1\ |
2000 1 .l ' \:\\
’i I \\‘\\
i : 4
1000 b \\\
’II [} \ \s >
SNy
0 'II, ' \\\"\n—
50.2880 50.2885 50.2890 50.2895 50.2900
Latitude
(@

ble 1 correspond to the least significant digits of the measured
coordinates. For example, the Laplace model mean value
864 x 107> represents an actual latitude of approximately
50.28864° N, with a 95 % CI of [50.28 805°,50.28924°]. The
same interpretation applies to the other models listed in Ta-
ble 1. In Fig. 1(a), the empirical PDF (blue histogram) ex-
hibits a right-skewed and heavy-tailed structure. The Laplace
distribution fits the peak well but fails to capture the tail be-
haviour, while the skew-normal improves on the asymmetry
but still under-represents the tail. In contrast, the skew-¢ dis-
tribution closely matches the empirical density across the en-
tire range, accurately modelling the sharp peak and heavy
right tail. The GH distribution exhibits the best alignment
with the empirical data, particularly capturing the skewness
and heavy tail behaviour, which aligns with the goodness-of-
fit metrics in Table 1. Fig. 1(b) shows the empirical CDF
along with the fitted CDFs. The Laplace distribution devi-
ates significantly around the central region, while the skew-
normal offers better central alignment but lacks precision in
the tails. GH again provides the closest match to the empirical
CDF, with skew-¢ exhibiting slightly superior tail conformity.
Overall, both PDF and CDF analyses confirm that the GH
distribution offers the best fit for the observed GNSS latitude
data, effectively capturing its skewed and heavy-tailed nature.

Table 1 presents the estimated parameters, Cls, and perfor-
mance metrics for four fitted models applied to GPS latitude
data. Among these, the GH distribution demonstrates the best
overall performance, with the highest log-likelihood (¥ =
1.20 x 10%) and the lowest AIC and BIC values (—2.40 x 10°)
for both, indicating an optimal balance between goodness-
of-fit and model complexity. It also achieves a low RMSE
(2.8 x 10™*), confirming its accuracy in approximating the
observed data. The skew-r model also performs competi-
tively, with a slightly lower RMSE (2.6 x 10~#) and a sim-
ilar log-likelihood, although its AIC and BIC values are
marginally less favourable than those of the GH. The GH dis-
tribution incorporates additional parameters, o, A, and f3, to
model heavy tails, kurtosis, and skewness, respectively. No-
tably, the small value of o@ = 0.05 suggests mild asymme-
try, highlighting the distribution’s suitability for capturing the
non-Gaussian characteristics of the data. The skew-normal

1.0
0.8 A
—— Empirical CDF

0.6 1 Laplace
& —+= Skew-normal
s}

0.4 1 -=- GH

: —-.= Skew-t (GH)
0.2 1
0.0 1

50.2890 50.2895 50.2900

Latitude

(b)

50.2880 50.2885

Fig. 1. Probability density function (a) and cumulative distribution function (b) for latitude data with fitted distributions using weighted MLE.
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Table 1. Estimated parameters with 95 % CIs and performance metrics for the fitted models applied to GNSS latitude data.

Model

Parameters CI* A4 AIC BIC RMSE
u* c \% o A B
X107 x107°  x10 x10°  x10®  x10°
Laplace 864 20 - - - - [805;924] 1.16 —2.33 —233 3.5.10°¢
Skew-normal 857 21 - 050 - - [825;904] 1.13 —227 227 25-107%
GH 845  0.06 - 005 139 043 [841;917] 120 —240 —240 28-1074
Skew-t 861 14 5.0 - - - [825;897] 1.16 —2.32 232 26-1074

“Note: The values marked with an asterisk (1 and CI) are expressed as least significant digits relative to a base latitude of 50.28000° N and scaled by 10~>.

107 o Data vs Theoretical CDF
——- Perfect Fit
0.8
w
a
]
= 0.6 1
=
°
S 0.4
()
e
F
0.2 A
0.0 A
0.0 0.2 0.4 0.6 0.8 1.0
Empirical CDF
(a) Laplace
107" ¢ Datavs GH CDF
——- Perfect Fit
0.8 4
w
a
o
— 0.6
=
©
s 0.4
[
<
=
0.2 1
0.0 1
0.0 0.2 0.4 0.6 0.8 1.0
Empirical CDF
(c) GH

1.0 ® Data vs Theoretical CDF

——- Perfect Fit

0.8 A
L
a
O
= 0.6
Y
S 0.4-
(]
£
[
0.2 1
0.0
0.0 0.2 0.4 0.6 0.8 1.0
Empirical CDF
(b) Skew-normal
1.0 1 ;
® Data vs Theoretical CDF
—-=-=- Perfect Fit
0.8 1
w
[a}
o
= 0.6 1
©
©
s 0.4
[
<
=
0.2 A
0.0 1
0.0 0.2 0.4 0.6 0.8 1.0
Empirical CDF
(d) Skew-t

Fig. 2. Residual analysis of the selected distributions using PP plot.

model performs moderately well, capturing skewness through
its shape parameter (o = 0.50), but its RMSE (2.5 x 107%)
and lower likelihood suggest it is less flexible in modelling
heavy tails. In contrast, the Laplace model performs worse,
with the highest RMSE (3.5 x 10~%) and the lowest likeli-
hood, failing to capture the data’s asymmetry and heavy tails.
Overall, the GH distribution provides the most reliable rep-
resentations of the latitude data based on both fit quality and
parameter efficiency. Fig. 1 and Table 1 together evaluate the
statistical models’ fit to GPS latitude data, supporting both
qualitative and quantitative analysis.

This study uses probability—probability (P—P) plots to visu-
ally assess the agreement between empirical latitude data and
theoretical distributions. These plots compare the CDF of the
observed data with that of a specified theoretical model by
plotting empirical probabilities against theoretical ones, mak-
ing them a valuable tool for evaluating goodness-of-fit [28].
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Fig. 2 shows the P-P plots for the residual analysis of four
fitted distributions: Laplace, skew-normal, GH, and skew-t-
against the empirical CDF of the latitude data. The closer
the blue curve is to the red dashed line (representing a per-
fect fit), the better the distribution matches the empirical data.
In Fig. 2(c), the GH distribution aligns most closely with
the diagonal, indicating the best overall fit and demonstrat-
ing its effectiveness in capturing both skewness and kurto-
sis in the data. The skew-normal and skew-¢ distributions in
Fig. 2(b) and (d) show a generally good fit, though slight de-
viations at the lower tails and centre suggest minor limita-
tions in capturing the data’s asymmetry or kurtosis. In con-
trast, the Laplace distribution in Fig. 2(a) deviates more no-
ticeably from the diagonal, especially in the lower and upper
tails, indicating a poor fit to the empirical data. This is consis-
tent with Laplace’s limited ability to capture asymmetry and
heavy tails. Overall, the GH distribution demonstrates supe-
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rior performance in residual behaviour, confirming its suit-
ability for modelling the GPS latitude data compared to the
other distributions analysed.

In summary, the P-P plots confirm that the GH distribu-
tion provides the best empirical fit, followed by the skew-¢
and skew-normal models, with Laplace performing the worst.
These visual results are consistent with the quantitative met-
rics from the likelihood and RMSE analyses.

6. CONCLUSIONS

This study critically assessed four probability distribu-
tions: Laplace, skew-normal, GH, and skew-#- for modelling
skewed and heavy-tailed data using GNSS latitude data as an
example. Using the WMLE, we estimated parameters and
ClIs to quantify uncertainty. We also evaluated model perfor-
mance using log-likelihood, AIC, BIC, and RMSE.

The analysis showed that, although the Laplace model
offers a simple symmetric representation, it performed the
weakest overall. Its limited ability to capture heavy tails and
asymmetry resulted in the highest RMSE, lowest likelihood,
and the widest CIs. The skew-normal model improved fit by
capturing asymmetry and producing tighter intervals, yet it
struggled with heavy tails.

The skew-¢ distribution provided a more balanced fit, effec-
tively modelling both skewness and moderate tail behaviour.
It performed well across all metrics, with only minor devi-
ations in the lower tails and centre. The GH distribution
proved most robust, closely aligning with empirical data and
excelling in both statistical and visual evaluations. Its ad-
ditional shape, skewness, and kurtosis parameters enabled it
to capture complex distributional features, outperforming all
other models. Both GH and skew-t showed tighter CIs, indi-
cating more reliable parameter estimates.

The novelty of this work lies in establishing a unified
statistical framework that integrates WMLE-based parame-
ter estimation with multiple non-Gaussian models to evalu-
ate GNSS measurement uncertainty under real-world, non-
Gaussian noise conditions. Unlike previous research, which
focused mainly on Gaussian assumptions, this study demon-
strates that heavy-tailed and asymmetric models, particularly
GH and skew-t, significantly improve distributional fit and the
accuracy of uncertainty quantification.

These results highlight the importance of flexible, asym-
metric models for accurate GNSS error characterisation.
While RMSE quantifies overall deviation, it overlooks dis-
tributional nuances evident in models such as skew-normal,
which achieve low RMSE but misrepresent tail structure. In
contrast, GH and skew-# models deliver superior performance
across all criteria. AIC and BIC further support their suitabil-
ity by balancing fit and complexity, ensuring robustness and
generalisability to new datasets.

This work has practical implications for GNSS-based po-
sitioning, calibration, and metrological applications, particu-
larly in environments where impulsive or non-Gaussian noise
dominates. Future work will extend this framework to dy-
namic GNSS scenarios and explore its integration with ad-
vanced filtering and real-time uncertainty estimation tech-
niques.
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