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Abstract: The article lists situations where it is impractical or impossible to record all observation results during repeated measurements, 
only their minimum and maximum values. The Monte Carlo method is used to analyze the efficiency of various estimators of the expected 
value for different distribution laws of observation results. The possibility of determining the estimate of the numerical value and type A 
standard uncertainty of the measurand using the sample range of results of multiple observations is considered, taking into account their 

number and the distribution law. The Monte Carlo method is used to obtain the dependence of the coefficient for converting the sample 
range of multiple measurement results into the sample standard deviation for different distribution laws. The novelty of the article lies in the 
experimental procedure presented for obtaining the dependence of the conversion coefficient on the number of indicating measuring 
instrument readings without determining their distribution law. An example is provided for evaluating the numerical value and type A 
measurement standard uncertainty using the parameters of the sample range of measured humidity values from a standard hygrometer. The 

novelty of this work is the empirical determination of α for real indication measuring instrument (IMI) readings, which can be used to 

propose calibration-like procedures for range-based assessment. 
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1. INTRODUCTION 

Sometimes, instead of recording all data from multiple 
measurements, it is necessary to limit oneself to only the 
maximum and minimum values.  

This occurs due to: technical limitations (insufficient 
memory or processing speed); in emergency situations 
(earthquakes or floods, when it is important to estimate the 
scale of the disaster based on peak values); when studying the 
limits for improving the parameters of an object (in sports or 
technology); or in visual observations, when device readings 
change too quickly. 

It is important to remember that this approach has its 
drawbacks. By analyzing only the extreme values of measu-
rements, you lose all information about the dynamics and 
intermediate components. In addition, extreme values are 
very sensitive to blunders and can distort measurement 
results. Therefore, before using this method, it is necessary to 
carefully evaluate its applicability in each particular case. 

In this article we will show how, using the extreme values 
of a measured quantity, we can find its numerical value and 

determine the type A uncertainty for a sample of known size, 
with both known and unknown probability density functions 
(PDF) of observation results. 

2. SUBJECT & METHODS 

In situations where it is not possible to record all sample 
results from repeated observations, the characteristics of the 
sample range can be used to estimate the measurand and its 
type A uncertainty. This approach also improves the producti-
vity of repeated measurements. 

A. Evaluation of the measurand 

In statistics, various estimates of the expected value are 
used to evaluate the results of repeated observations: 
arithmetic mean, median, and midrange. Formulas (1)-(3) for 
their calculation are presented in Table 1 [1].  

For different PDFs of observations, these estimates have 
different variances. Fig. 1 shows the dependence of the 
sample variance (Var) of these estimates on the sample size n 
for different PDFs, obtained by the Monte Carlo method [2]. 
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Fig. 1.  Dependence of the efficiency Var of various estimators of 

the expected value for different PDFs of the observed dispersion of 
IMI readings: (a) Arcsine; (b) Uniform; (c) Triangular; (d) Normal. 

Table 1.  Expressions for various estimates of the measurand. 

Estimators Formulas  

Sample mid-range – – 𝑀𝑛 =
𝑦𝑚𝑎𝑥 + 𝑦𝑚𝑖𝑛

2
                      

(1) 

Sample mean  –– 𝑦̅𝑛 =
1

𝑛
∑ 𝑦𝑞

𝑛

𝑞=1

                              

(2) 

Median – ⸳ – 𝑀𝑒𝑑𝑛 = {

𝑦(𝑛+1)
2

, 𝑛 − odd

𝑦𝑛
2

+ 𝑦𝑛
2

+1

2
, 𝑛 − even

 

(3) 

 

The variances of the various estimates presented in Fig. 1 

were normalized to the variances of these estimates for the 

number of repeated observations 𝑛 = 2 to ensure meaningful 

comparison of the distributions. 

As shown in Table 1, the various estimates of the sample 

expectation for 𝑛 = 2 are determined by the same expression:  
 

𝑦̅2 = 𝑀2 = 𝑀𝑒𝑑2 =
𝑦𝑚𝑎𝑥 + 𝑦𝑚𝑖𝑛

2
 (4) 

 

consequently, the variances of these estimates for 𝑛 = 2  are 

equal, and the starting point on the graphs in Fig. 1 is equal 

to 1 for all distribution laws of the result. The basic estimator 

of experimental variance 𝑠𝑛
2 and the variance of the mean 

𝑢𝑛
2 (𝑦̄) for a sample of normal distribution are given by the 

following formulas: 
 

𝑠𝑛
2 =

1

(𝑛 − 1)
∑(𝑦𝑞 − 𝑦̄𝑛)2

𝑛

𝑞=1

 (5a) 

 

𝑢𝑛
2 (𝑦̄) =

𝑠𝑛
2

𝑛
 (5b) 

 

The distributions chosen for comparison are the most 

relevant for measurement situations because a normal 

distribution is typically assigned to the readings of indication 

measuring instruments (IMIs) based on the central limit 

theorem of probability theory; the arcsine PDF of the readings 

of IMIs occurs in the presence of interference from the AC 

network in their measuring circuits (or in the presence of 

pulsations in the power supply circuit of the IMIs); a uniform 

PDF is accepted when the input quantities are specified by 

boundaries without specifying the distribution law within 

these boundaries [3]; and a triangular PDF is the composition 

of two uniform distributions with identical boundaries. 

All these distributions are symmetrical, and estimates of 

their parameters (expected value, sample variance, sample 

standard deviation, standard uncertainty of type A) are 

obtained during the processing of repeated observation 

results. 

A more detailed description of the various PDFs and their 

application cases is provided in the standard [4]. 

Analysis of Fig. 1 shows that for the arcsine and uniform 

PDFs, the mid-range has the minimum variance, making it 

the most efficient estimate for multiple observations [5]. 
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A similar conclusion can be drawn by analyzing the 

relationship between the well-known expressions for 

estimating the variances of the sample mid-range and the 

sample average (Fig. 2): 
 

𝐸𝑓𝑓 =
Var(𝑀𝑛)

Var(𝑦̅𝑛)
=

(𝑏 − 𝑎)2

2(𝑛 + 1)(𝑛 + 2)
(𝑏 − 𝑎)2

12𝑛

=
6𝑛

(𝑛 + 1)(𝑛 + 2)
 (6) 

 

for a uniform distribution law of observation results, defined 

by its boundaries [a; b]. 

 

Fig. 2.  Dependence of the ratio of the variances of the sample mid-

range and the sample average on the number of repeated 

measurements 𝑛 with their uniform distribution law. 

B. Evaluation of type A uncertainty of a measurand 

The standard uncertainty of the estimate of the measurand, 

evaluated by a type A method, must be calculated according 

to the expression [3] – for example, for a normal distribution, 

from (5b): 

 

𝑢𝐴(𝑌̂) =
𝑠

√𝑛
 , (7) 

 

where 𝑠 is the sample standard deviation of repeated obser-

vations, and 𝑛 is the number of observations. 

To determine the sample standard deviation of the results 

of repeated observations 𝑠 by their sample range 𝑅, one can 

use the expression obtained in [6]: 

 

𝑠 =
𝑅

𝛼
,  (8) 

 

where 𝑅 = 𝑦𝑚𝑖𝑛𝑚𝑎𝑥; 𝛼 is a conversion coefficient that 

depends on the number of observations 𝑛 and the PDF of the 

observed dispersion of the IMI readings – indications of the 

measuring instrument obtained under specified measurement 

conditions.  

It should be noted that in work [6], an analytical 

dependence 𝛼 on 𝑛 was obtained, which is valid only for the 

normal distribution law of IMI readings. 
Using the Monte Carlo method, we calculated the 

dependence of α on n for various distribution densities of 

observation results (Fig. 3) listed in Fig. 1. 

 

Fig. 3.  Dependence of the coefficient 𝛼 on 𝑛 for different 
distribution laws: o – arcsine; ◊ – normal; □ – uniform. 

The dependence of 𝛼 on 𝑛 can be determined in the same 

way for any other PDFs of observation results. 

To calculate 𝛼, 𝑀 = 104  samples of a random number 𝑦  

of size 𝑛 = 3, 4, … , 20   were generated, each having a given 

PDF with zero expected value and unit standard deviation. 

After this, 𝛼 was determined by the formula: 

 

𝛼 =
1

𝑀
∑

𝑦𝑚𝑎𝑥 𝑗 − 𝑦𝑚𝑖𝑛 𝑗

𝑠𝑗

𝑀

𝑗=1

, (9) 

 

where the sample standard deviation value 𝑠𝑗  is calculated 

using the estimator formula for the normal distribution (5a) 

 

𝑠𝑗 = √
1

(𝑛 − 1)
∑(𝑦𝑖𝑗 − 𝑦̄𝑗)2

𝑛

𝑖=1

, (10) 

 

while the estimator of the mean value for the normal 

distribution is 
 

𝑦̄𝑗 =
1

𝑛
∑ 𝑦̄𝑖𝑗 .

𝑛

𝑖=1

 (11) 

 

To generate random numbers distributed according to 

uniform and normal laws, the random number generator 

embedded in MS Excel was used. To obtain random numbers 

distributed according to the arcsine law, random numbers 

distributed according to the uniform law 𝑦𝑖
𝑢 (in the range  

0-1) were generated and then transformed into numbers 

distributed according to the arcsine law 𝑦𝑖
𝑎, using the inverse 

function method according to the formula: 

 

𝑦𝑖
𝑎 = 1 + 𝑠𝑖𝑛[ π(𝑦𝑖

𝑢 − 0,5)]. (12) 

 

Thus, to use the characteristics of the observation sample 

range to estimate the numerical value of the measurand and 

its type A standard uncertainty, it is necessary to study the 

PDF of the IMI readings [7].  
It should be noted that even with a sufficiently large sample 

size, it is not always possible to describe the PDF analytically 

by applying fitting criteria. 
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In this case, the dependence of 𝛼 on 𝑛 can be directly 

determined using the results of the measurement experiment, 

as shown in the example below. 

EXAMPLE: EVALUATION OF THE NUMERICAL VALUE AND 

TYPE A UNCERTAINTY OF A STANDARD HYGROMETER 

We investigated the distribution law of the observed scatter 

in the standard hygrometer readings. For this purpose, 6392 

humidity measurements were performed using the standard 

hygrometer Testo 400 with a humidity generator type 

“Huminator” at a point of 25 % RH under repeatability 

conditions (Fig. 4).  

 
(a) 

 
(b) 

Fig. 4.  Standard hygrometer Testo 400 (a) and humidity generator 
type “Huminator” (b). 

The histogram of the scatter in these readings after 

eliminating outliers is shown in Fig. 5.  

To eliminate gaps in the histogram, it was necessary to 

expand the bin width by reducing the number of bins to 7.  
This reduced the number of degrees of freedom to 4. 

 

Fig. 5.  Histogram of standard hygrometer readings scatter.  

Despite the visual similarity of the histogram to the normal 

distribution law, Pearson’s chi-squared test gave a negative 

result: the value of 𝜒2 = 825 at 𝜒0
2 = 18.46  for a probability 

of 0.999 and 4 degrees of freedom. A similar situation 

occurred when using triangular, double exponential, and 

lognormal distributions as hypothetical models. 

Based on repeated humidity measurements using a stan-

dard hygrometer, the dependences of the sample mean  
 

𝑊̂ =
1

𝑛
∑ 𝑊𝑖

𝑛

𝑖=1

 (13) 

 

and the sample mid-range  
 

𝑊̂𝑚𝑟 =
𝑊𝑚𝑎𝑥 + 𝑊𝑚𝑖𝑛

2
 (14) 

 

were obtained depending on the sample size 𝑛 (Fig. 6). 

 

Fig. 6.  Dependence of estimates of the expected value on 
n: –– arithmetic mean; – – mid-range 

The figure shows that as the sample size increases, the 

arithmetic mean of the sample increases, while the mid-range 

decreases.  

For n = 60, the difference between the estimates can be 

0.0035 % RH. This difference can be neglected if the 

resolution of the reference hygrometer is greater than 

0.01 % RH. 

 

Fig. 7.  Experimental dependence (▲) of the conversion coefficient 

𝛼 of the sample range of readings of the standard hygrometer into 

the sample standard deviation on the sample size 𝑛. 

Fig. 7 shows the experimental dependence of the coef-

ficient 𝛼 on the sample size 𝑛 for the real PDF of hygrometer 

readings (▲).  

It is clear from the figure that this dependence is not 
approximated by any of the theoretical curves shown in Fig. 2. 

For this dependence, the least squares method was used to 

find an approximation in the form [8]: 

 

𝛼 =  0.8508 ⋅ ln(𝑛)  +  0.862. (15) 
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3. RESULTS 

For the results of multiple humidity measurements with 
a standard hygrometer given in Table 2 [9], we will calculate 
various estimates of type A standard uncertainties. 

Table 2.  Reference hygrometer readings. 

№. of 
observations 

𝑊𝑠𝑖 
[% RH] 

№. of 
observations 

𝑊𝑠𝑖 
[% RH] 

1 
2 
3 
4 
5 

26.13 
26.11 
26.12 
26.10 
26.14 

  6 
  7 
  8 
  9 
10 

26.10 
26.11 
26.13 
26.14 
26.12 

 
The classical estimate of type A standard uncertainty was 

calculated using the well-known formula [3]:  
 

𝑢𝐴(𝑊) = √
1

𝑛𝑠(𝑛𝑠 − 1)
∑(𝑊𝑖 − 𝑊)2

𝑛𝑠

𝑖=1

 (16) 

 

and for the data in Table 2, this value was 0.00471 % RH. 
Since the maximum humidity value in Table 2 is 

26.14 % RH, and the minimum is 26.10 % RH, the estimate 
of type A standard uncertainty, calculated using the sample 
range and considering the dependence (8), was: 

 

𝑢𝐴(𝑊̂𝑚𝑟) =
26.14 − 26.10

[0.8508 ⋅ ln(10) +  0.862]√10
= 0.00449  % 𝑅𝐻. 

(17) 
 

Thus, the difference between the results of evaluating the 
type 𝐴 standard uncertainty using the classical method and the 
sample range was 4.75 %. 

4. CONCLUSIONS 

1. The study of the dependence of the sample variance of 
different expected value estimates for various PDFs of 
the observed variability of IMI readings showed that the 
midrange is the most effective estimate for the arcsine 
and uniform PDFs, while the arithmetic mean is the most 
effective estimate for the triangular and normal PDFs. 

2. It is demonstrated that in order to use the characteristics 
of the sample range of the observation sample to 
estimate the numerical value of the measurand and its 
type A standard uncertainty, it is necessary to know the 
PDF of IMI readings. 

3. For unknown distributions, the conversion coefficient α 
can be determined empirically by repeated measu-
rements under repeatability conditions with the same 
IMI. In such experiments, both the empirical standard 
deviation s and the range 𝑅 are available, enabling 
estimation of α from the ratio 𝑅 𝑠⁄ . This procedure can 
be regarded as a form of calibration of the IMI with 
respect to range-based estimation, linking the extreme-
value behavior of indications to conventional measures 
of variability. 

4. An experimental dependence of the conversion 
coefficient α of the sample range of readings of the 
standard hygrometer into the sample standard deviation 
is obtained, on the basis of which estimates of the value 

of the type 𝐴 standard uncertainty of humidity measure-
ment are obtained that are close to the classical estimates 
based on the GUM procedure.  
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