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Abstract: The article lists situations where it is impractical or impossible to record all observation results during repeated measurements,
only their minimum and maximum values. The Monte Carlo method is used to analyze the efficiency of various estimators of the expected
value for different distribution laws of observation results. The possibility of determining the estimate of the numerical value and type A
standard uncertainty of the measurand using the sample range of results of multiple observations is considered, taking into account their
number and the distribution law. The Monte Carlo method is used to obtain the dependence of the coefficient for converting the sample
range of multiple measurement results into the sample standard deviation for different distribution laws. The novelty of the article lies in the
experimental procedure presented for obtaining the dependence of the conversion coefficient on the number of indicating measuring
instrument readings without determining their distribution law. An example is provided for evaluating the numerical value and type A
measurement standard uncertainty using the parameters of the sample range of measured humidity values from a standard hygrometer. The
novelty of this work is the empirical determination of o for real indication measuring instrument (IM1) readings, which can be used to
propose calibration-like procedures for range-based assessment.
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1. INTRODUCTION

Sometimes, instead of recording all data from multiple
measurements, it is necessary to limit oneself to only the
maximum and minimum values.

This occurs due to: technical limitations (insufficient
memory or processing speed); in emergency situations
(earthquakes or floods, when it is important to estimate the
scale of the disaster based on peak values); when studying the
limits for improving the parameters of an object (in sports or
technology); or in visual observations, when device readings
change too quickly.

It is important to remember that this approach has its
drawbacks. By analyzing only the extreme values of measu-
rements, you lose all information about the dynamics and
intermediate components. In addition, extreme values are
very sensitive to blunders and can distort measurement
results. Therefore, before using this method, it is necessary to
carefully evaluate its applicability in each particular case.

In this article we will show how, using the extreme values
of a measured quantity, we can find its numerical value and
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determine the type A uncertainty for a sample of known size,
with both known and unknown probability density functions
(PDF) of observation results.

2. SUBJECT & METHODS

In situations where it is not possible to record all sample
results from repeated observations, the characteristics of the
sample range can be used to estimate the measurand and its
type A uncertainty. This approach also improves the producti-
vity of repeated measurements.

A. Evaluation of the measurand

In statistics, various estimates of the expected value are
used to evaluate the results of repeated observations:
arithmetic mean, median, and midrange. Formulas (1)-(3) for
their calculation are presented in Table 1 [1].

For different PDFs of observations, these estimates have
different variances. Fig. 1 shows the dependence of the
sample variance (Var) of these estimates on the sample size n
for different PDFs, obtained by the Monte Carlo method [2].
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var g Table 1. Expressions for various estimates of the measurand.
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Fig. 1. Dependence of the efficiency Var of various estimators of
the expected value for different PDFs of the observed dispersion of
IMI readings: (a) Arcsineg; (b) Uniform; (c) Triangular; (d) Normal.

A more detailed description of the various PDFs and their
application cases is provided in the standard [4].

Analysis of Fig. 1 shows that for the arcsine and uniform
PDFs, the mid-range has the minimum variance, making it
the most efficient estimate for multiple observations [5].
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A similar conclusion can be drawn by analyzing the
relationship between the well-known expressions for
estimating the variances of the sample mid-range and the
sample average (Fig. 2):
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12n

for a uniform distribution law of observation results, defined
by its boundaries [a; b].
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Fig. 2. Dependence of the ratio of the variances of the sample mid-
range and the sample average on the number of repeated
measurements n with their uniform distribution law.

B. Evaluation of type A uncertainty of a measurand

The standard uncertainty of the estimate of the measurand,
evaluated by a type A method, must be calculated according
to the expression [3] — for example, for a normal distribution,
from (5b):

uy(7) = j—ﬁ ™

where s is the sample standard deviation of repeated obser-
vations, and n is the number of observations.

To determine the sample standard deviation of the results
of repeated observations s by their sample range R, one can
use the expression obtained in [6]:

s=- (8)

a

where R = ymin,,,,; a is a conversion coefficient that
depends on the number of observations n and the PDF of the
observed dispersion of the IMI readings — indications of the
measuring instrument obtained under specified measurement
conditions.

It should be noted that in work [6], an analytical
dependence a on n was obtained, which is valid only for the
normal distribution law of IMI readings.

Using the Monte Carlo method, we calculated the
dependence of a on n for various distribution densities of
observation results (Fig. 3) listed in Fig. 1.
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Fig. 3. Dependence of the coefficient @ on n for different
distribution laws: 0 — arcsine; ¢ — normal; o — uniform.

The dependence of a on n can be determined in the same
way for any other PDFs of observation results.

To calculate , M = 10* samples of a random number y
of sizen = 3,4,...,20 were generated, each having a given
PDF with zero expected value and unit standard deviation.

After this, « was determined by the formula:

M
1 VYmaxj — Yminj
a_MZ S]' ’ (9)
Jj=1

where the sample standard deviation value s; is calculated
using the estimator formula for the normal distribution (5a)

(10)

n
1 N
Sj = (n— 1)21:(3’” - Yj)z'

while the estimator of the mean value for the normal

distribution is
n
o 12 _
Vi = Z. Vij-
i=1

To generate random numbers distributed according to
uniform and normal laws, the random number generator
embedded in MS Excel was used. To obtain random numbers
distributed according to the arcsine law, random numbers
distributed according to the uniform law y}* (in the range
0-1) were generated and then transformed into numbers
distributed according to the arcsine law y{*, using the inverse
function method according to the formula:

1)

yi =1+sin[n(y{ —0,5)]. (12)

Thus, to use the characteristics of the observation sample
range to estimate the numerical value of the measurand and
its type A standard uncertainty, it is necessary to study the
PDF of the IMI readings [7].

It should be noted that even with a sufficiently large sample
size, it is not always possible to describe the PDF analytically
by applying fitting criteria.
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In this case, the dependence of « on n can be directly
determined using the results of the measurement experiment,
as shown in the example below.

EXAMPLE: EVALUATION OF THE NUMERICAL VALUE AND
TYPE A UNCERTAINTY OF A STANDARD HYGROMETER

We investigated the distribution law of the observed scatter
in the standard hygrometer readings. For this purpose, 6392
humidity measurements were performed using the standard
hygrometer Testo 400 with a humidity generator type
“Huminator” at a point of 25 % RH under repeatability
conditions (Fig. 4).

(b)

Fig. 4. Standard hygrometer Testo 400 (a) and humidity generator
type “Huminator” (b).

The histogram of the scatter in these readings after
eliminating outliers is shown in Fig. 5.

To eliminate gaps in the histogram, it was necessary to
expand the bin width by reducing the number of binsto 7.

This reduced the number of degrees of freedom to 4.
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Fig. 5. Histogram of standard hygrometer readings scatter.

Despite the visual similarity of the histogram to the normal
distribution law, Pearson’s chi-squared test gave a negative
result: the value of y? = 825 at y2 = 18.46 for a probability
of 0.999 and 4 degrees of freedom. A similar situation
occurred when using triangular, double exponential, and
lognormal distributions as hypothetical models.

Based on repeated humidity measurements using a stan-
dard hygrometer, the dependences of the sample mean

n
~ 1
W= . w; (13)
i=1
and the sample mid-range
_ Whax + Wi
-~ - max 2 min (14)

were obtained depending on the sample size n (Fig. 6).
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Fig. 6. Dependence of estimates of the expected value on
n: — arithmetic mean; — — mid-range

The figure shows that as the sample size increases, the
arithmetic mean of the sample increases, while the mid-range
decreases.

For n = 60, the difference between the estimates can be
0.0035 % RH. This difference can be neglected if the
resolution of the reference hygrometer is greater than
0.01 % RH.
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Fig. 7. Experimental dependence (A ) of the conversion coefficient
a of the sample range of readings of the standard hygrometer into
the sample standard deviation on the sample size n.

Fig. 7 shows the experimental dependence of the coef-
ficient a on the sample size n for the real PDF of hygrometer
readings (A).

It is clear from the figure that this dependence is not
approximated by any of the theoretical curves shown in Fig. 2.

For this dependence, the least squares method was used to
find an approximation in the form [8]:

a = 0.8508 - In(n) + 0.862. (15)
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3. RESULTS

For the results of multiple humidity measurements with
a standard hygrometer given in Table 2 [9], we will calculate
various estimates of type A standard uncertainties.

Table 2. Reference hygrometer readings.

Ne. of Wsi No. of Wsi
observations [% RH] observations [% RH]
1 26.13 6 26.10
2 26.11 7 26.11
3 26.12 8 26.13
4 26.10 9 26.14
5 26.14 10 26.12

The classical estimate of type A standard uncertainty was
calculated using the well-known formula [3]:

_ 1 & _
T _ 2 16
w, (W) = ns(ns_l);(m W) (16)

and for the data in Table 2, this value was 0.00471 % RH.

Since the maximum humidity value in Table2 is
26.14 % RH, and the minimum is 26.10 % RH, the estimate
of type A standard uncertainty, calculated using the sample
range and considering the dependence (8), was:

26.14 — 26.10
[0.8508 - In(10) + 0.862]V10

= 0.00449 % RH.
17

Thus, the difference between the results of evaluating the
type 4 standard uncertainty using the classical method and the
sample range was 4.75 %.

Uy (er) =

4. CONCLUSIONS

1. The study of the dependence of the sample variance of
different expected value estimates for various PDFs of
the observed variability of IMI readings showed that the
midrange is the most effective estimate for the arcsine
and uniform PDFs, while the arithmetic mean is the most
effective estimate for the triangular and normal PDFs.

2. It is demonstrated that in order to use the characteristics
of the sample range of the observation sample to
estimate the numerical value of the measurand and its
type A standard uncertainty, it is necessary to know the
PDF of IMI readings.

3. For unknown distributions, the conversion coefficient o
can be determined empirically by repeated measu-
rements under repeatability conditions with the same
IMI. In such experiments, both the empirical standard
deviation s and the range R are available, enabling
estimation of a from the ratio R/s. This procedure can
be regarded as a form of calibration of the IMI with
respect to range-based estimation, linking the extreme-
value behavior of indications to conventional measures
of variability.

4. An experimental dependence of the conversion
coefficient a of the sample range of readings of the
standard hygrometer into the sample standard deviation
is obtained, on the basis of which estimates of the value

of the type A standard uncertainty of humidity measure-
ment are obtained that are close to the classical estimates
based on the GUM procedure.
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