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Previous research amply showed the importance of a good fraction understanding but also people’s lack 
of fraction understanding. It is therefore important to investigate the cognitive processes that underlie 
reasoning with fractions. The present study investigated the role of inhibition and switch costs in frac-
tion comparison tasks. Participants solved a fraction comparison task that alternated between 4 items 
congruent and 4 items incongruent with natural number reasoning. This allowed to not only investigate 
congruency switch effects, but also inhibition, given that inhibition was experimentally increased by the 
prolonged exposure to incongruent trials. Based on data of seventh graders, the present study showed 
that inhibition does not only play a role in learners’ general mathematics achievement, but also in specific 
areas of mathematics, such as fractions. Moreover, a switch cost was found in the lower accuracy rates and 
higher reaction times needed to correctly solve switch items compared to non-switch items.
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Introduction

Fraction Understanding

The acquisition of a good understanding of 
fractions is of crucial importance for learners’ 
mathematical development (Bailey, Hoard, 
Nugent, & Geary, 2012; Booth, Newton, & 

Twiss-Garrity, 2014; Siegler et al., 2012). It 
forms the basis for a good understanding of 
later mathematical contents, such as alge-
bra, proportional reasoning, probability, and 
calculus (see for example Behr, Lesh, Post, & 
Silver, 1983; Booth et al., 2014). It is there-
fore worrying that during the last decades, 
research amply showed that learning frac-
tions is challenging for many learners (see 
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for example Gabriel et al., 2013; Moss, 2005; 
Siegler et al., 2012). 

The Natural Number Bias
    
In the literature, several reasons can be found 
why fractions are so hard to grasp for learn-
ers. The fractions’ conceptually different 
meanings need to be understood: fractions as 
quotient, ratio, operator, and measure; learn-
ers need to develop a concept of number that 
is based on multiplicative relations instead of 
additive ones, etc. (for an overview, see Moss, 
2005). Remarkably, one reason received a lot 
of research attention in the last two decades, 
namely learners’ tendency to apply natural 
number properties to rational numbers. This 
phenomenon is known as the natural num-
ber bias (for an overview, see Van Hoof et al., 
2017). The natural number bias has frequent-
ly been found in participants’ higher accuracy 
rates and faster reaction times to correctly 
solve congruent fraction comparison items 
(where natural number reasoning leads to a 
correct answer, for example, which number is 
larger: 2/5 or 7/9; 2/5 is smaller than 7/9; just 
like 2 is smaller than 7 and 5 is smaller than 
9) compared to incongruent fraction compar-
ison items (where natural number reasoning 
leads to an incorrect answer, for example, 
which number is larger: 2/5 or 7/29; 2/5 is 
larger than 7/29, while 2 is smaller than 7 and 
5 is smaller than 29). Previous studies showed 
that (traces of) a natural number bias could 
not only be found in elementary-school chil-
dren, but also in secondary school children, 
adults, and even prospective teachers (Van 
Hoof et al., 2017; Behr et al., 1984; Clarke & 
Roche, 2009; Depaepe et al., 2013; McMullen, 
Laakkonen, Hannula-Sormunen, & Lehtinen, 
2015; Vamvakoussi & Vosniadou, 2010). Im-
portantly, several longitudinal studies found 
that a good understanding of the numerical 
magnitude of fractions is of crucial impor-

tance. It forms a first step and is necessary to 
understand other aspects of fractions, such as 
doing operations with fractions (Van Hoof et 
al., 2018; McMullen et al., 2015; McMullen & 
Van Hoof, 2020).

However, many learners have the miscon-
ception that the numerical value of a fraction 
increases when its numerator, denominator, 
or both increase. 

The Role of Intuitive Processing

Mistakes on fraction tasks do not only occur 
when learners have a wrong understanding of 
fractions. Even when learners have acquired 
a good understanding of fractions, they can 
still make mistakes on fraction tasks, due to 
the intuitive processing that is assumed to 
take place. This can be explained by the dual 
process theory of reasoning, which has been 
proven to describe the intuitive nature of in-
correct reasoning in several mathematical 
domains (Gillard et al., 2009), including frac-
tions (DeWolf & Vosniadou, 2015). The dual 
process theory argues that people have two 
different reasoning systems: an intuitive one 
(which is fast, automatic, and undemanding 
of working memory), and an analytical one 
(which is slow, deliberate, and demanding 
of working memory). Intuitive reasoning is 
engaged in by default, and often leads to ac-
curate responses (for example in congruent 
items). However, in some situations, it leads 
to an incorrect response and analytical rea-
soning is needed. With regard to fractions, 
learners are influenced by their intuitive natu-
ral number based concept of number (includ-
ing fractions), which needs to be overcome 
in incongruent fraction tasks. In this light, 
evidence for a natural number bias has also 
been shown in learners’ reaction time data. 
More specifically, longer reaction times are 
found on correctly solved incongruent items 
compared to correctly solved congruent ones, 
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given that analytical reasoning is needed in 
the former.

Based on the dual process theory, an in-
correct response to a task can therefore be 
the result of two possible situations. First, it 
is possible that an incorrect intuitive thought 
process occurs, without intervention of the 
analytical reasoning system. Second, it is pos-
sible that the analytical reasoning system 
does intervene, evaluates the intuitive an-
swer, tries to inhibit it, but fails to generate 
the correct answer (Gillard et al., 2009). The 
latter implies that inhibition might be of big 
importance in learners’ fraction understand-
ing, and more precisely when solving incon-
gruent fraction tasks. 

Inhibition 

Inhibition has been described as “the ability to 
ignore information or responses that are irrel-
evant to the task at hand” (Gilmore, Göbel, & 
Inglis, 2018). Recently, there is a growing and 
promising research interest in the field of cogni-
tive psychology in the role of inhibitory control 
as an important part of learners’ cognition and 
development. Also, in the area of mathematical 
thinking and learning, inhibition has been shown 
to play an important role in learners’ mathemat-
ical performance (see for example Van Dooren 
& Inglis, 2015). At the moment, however, the 
research field has two limitations. First, the role 
of inhibitory control has mostly been investi-
gated in relation to mathematics achievement 
in a general sense. Therefore, research is need-
ed to investigate the role of inhibitory control 
to specific components of mathematics, such 
as fraction understanding, and try to unravel 
the role of inhibition in very specific process-
es, for instance comparing the magnitude of 
fractions (Van Dooren & Inglis , 2015; Gilmore 
et al., 2018). Second, most of the studies link-
ing inhibitory control with (certain aspects of) 
mathematics achievement are correlational in 

nature; research showing the causal relation be-
tween inhibition and mathematics achievement 
is still missing. As stated by previous research, 
“a limitation of such a correlational approach is 
that none of the classical inhibitory control tasks 
assess individual differences in the ability to in-
hibit a misleading strategy” (Rossi, Vidal, Letang, 
Houdé, & Borst, 2019, p. 24).

The only study, as far as we know, that inves-
tigated in a causal way the need for inhibition 
when comparing fractions is the recent study 
of Rossi et al. (2019). In this study, a negative 
priming paradigm was used to investigate the 
role of inhibition in fraction comparison tasks. 
The reasoning of a negative priming paradigm 
is that if a strategy or distractor is inhibited on 
a given item (referred to as a prime), this will 
lead to a decrease of that strategy/distractor 
on the item following the prime (referred to 
as the probe) compared to the control condi-
tion where inhibition of that strategy/distrac-
tor is not needed in the prime. This will lead to 
lower accuracy rates and/or higher reactions 
times on a probe (where the inhibited strat-
egy on the prime is needed to come to the 
correct solution) following a prime compared 
to the same type of probe following a con-
trol item. Rossi et al. (2019) showed this with  
9th graders and adults, who compared frac-
tions with common denominators (congruent 
frac  tion comparison tasks; e.g., 3/7 vs. 5/7). 
They needed more time to do this after they 
compared fractions with common numera-
tors (incongruent fraction comparison tasks 
in which the strategy “the larger the natural 
number, the larger the fraction” needed to 
be inhibited; e.g., 7/2 vs. 7/8) than after they 
had to indicate which of two fractions had a 
larger denominator compared to its numer-
ator (neutral task in light of natural number 
bias). This result shows that inhibition of “the 
greater the natural number, the greater the 
fraction” reasoning takes place when correct-
ly comparing fractions with common numera-
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tors. However, as stated by Rossi et al. (2019), 
there were several limitations in this study. 
First, in the control trials the prime consisted 
of a different task (indicate which fraction out 
of two has a larger denominator in comparison 
with its numerator), while in the test trials the 
prime consisted of the same task as the probe 
(indicate which fraction out of two has the larg-
est numerical value). Therefore, the negative 
priming effect could be explained by the differ-
ence between a task switch cost in the control 
trials and a strategy switch cost in the test tri-
als. Second, participants received 24 practice 
trials accompanied with feedback (regarding 
the correctness of the answer), with the aim 
to familiarize the participants with the task. By 
providing feedback, it might be possible that 
there was a learning effect and participants 
changed in their choice of strategy to solve the 
fraction comparison tasks. Third, the fractions 
used in the fraction comparison task had sev-
eral limitations. For example, only single digit 
numerators and denominators were used. As 
stated by Rossi et al. (2019), this might have led 
participants to rely more on the “the greater 
the whole number, the greater the fraction” 
heuristic, given that previous research conclud-
ed that the use of two digit fractions led to an 
increase of holistic processing of fractions (Ros-
si et al., 2019; Schneider & Siegler, 2010). Taken 
together, Rossi et al. (2019) suggest that “fu-
ture studies should investigate whether similar 
effects can be observed when different prime 
items are designed in the control trials, when 
no feedbacks are provided in the practice trials, 
and when a wider range of numbers including 
two digits number is used to generate the frac-
tions” (Rossi et al., 2019, p. 30). These issues 
will be addressed in the current study. Howev-
er, we will use a slightly different methodology 
compared to the negative priming paradigm, 
allowing us to not only investigate the role of 
inhibition in fraction comparison tasks, but also 
the role of a switch cost.

Strategy Switch Cost

A phenomenon that gained increased research 
interest is the strategy switch cost. Next to the 
widely known task switch cost (e.g., Verbrug-
gen, Liefooghe, & Vandierendonck, 2006), re-
cent literature has focused on and investigat-
ed the strategy switch cost, which has been 
defined as “the time taken by active control 
processes to reconfigure the cognitive system 
for the execution of another strategy. More 
specifically, when a problem is solved with a 
given strategy, and the next problem has to 
be solved with another strategy, the cognitive 
system must be reconfigured.” (Schillemans,  
Luwel, Onghena, & Verschaffel, 2011, p. 25). 
This reconfiguration comes with a cost, which 
has repeatedly been found in previous re-
search in participants’ longer reaction times 
and lower accuracy rates on switch compared 
to non-switch trials. This is no surprise given 
that the reconfiguration of the cognitive sys-
tem relies on the three main executive func-
tions: the previous strategy must be inhibited, 
attention must be shifted from the ‘old’ strat-
egy to the ‘new’ strategy, and procedures of 
the ‘new’ strategy must be retrieved by the 
working memory (e.g., Schillemans et al., 
2011). Interesting to note is that there is often 
an asymmetrical switch cost found in a count-
er-intuitive direction, namely a larger cost go-
ing from a difficult to an easier task than the 
reverse (see for example Luwel et al., 2009). 
Allport et al. (1994) give the following expla-
nation, which is in line with the negative prim-
ing paradigm: when solving a difficult, incon-
gruent task, the intuitive reasoning as used to 
solve an easy congruent task must be inhibited 
to come to the correct answer. This ‘inhibition 
mode’ carries over to the next task. Therefore, 
if the next task is an easy congruent one, an 
extra inhibition (of the previous inhibition) is 
needed, leading to larger switch costs.
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Since the strategy switch cost has solely 
been studied, as far as we know, in numeros-
ity judgment (Schillemans et al., 2011), com-
putational estimation, and two-digit addition 
tasks (both by Lemain & Lecacheur, 2010), 
further research is needed to investigate 
whether the same strategy switch cost is also 
present in different aspects of the mathemati-
cal curriculum (Schillemans et al., 2011), such 
as fractions. Applied to fraction comparisons, 
when fractions are compared in a holistic way, 
every fraction comparison task is the same 
and congruency has no effect on the mental 
processes needed to solve a fraction compar-
ison task. However, when participants com-
pare fractions in a componential way (and 
therefore the natural number bias can play a 
role), congruency does have an effect. While 
congruent items can be correctly solved by 
focusing on the natural number components, 
a different strategy is needed to correctly 
solve incongruent fraction comparison tasks. 
This switch between strategies can therefore 
lead to a switch cost. In line with Schmidt and 
Houwer (2011), we will refer to this cost as 
a congruency switch cost. This describes the 
phenomenon that when the congruency of 
a trial is the same as the previous trial, this 
will incur a benefit (higher accuracy rates and 
lower response times) compared to the situa-
tion in which the previous trial has the oppo-
site congruency. 

 
The Present Study

In the present study, we investigated both the 
causal role of inhibition in fraction compari-
son tasks and whether a switch cost could be 
replicated when participants solve a fraction 
comparison task. In total, the present study 
addressed four research questions. First, we 
investigated whether our study would con-
firm previous research by finding traces of 
the natural number bias in learners’ accura-

cy and/or reaction time data. Our hypothesis 
was that the participants would have higher 
accuracy rates on congruent compared to in-
congruent items and that they would need 
more time to accurately answer an incongru-
ent item compared to a congruent item. Sec-
ond, we investigated whether inhibition (of 
natural number reasoning) is needed when 
learners compare fractions. Our hypothesis 
was that inhibition does play a role and this 
could be found in the higher accuracy rates 
and lower reaction times needed to correct-
ly solve incongruent trials when inhibition 
is experimentally increased (by a prolonged 
exposure to incongruent trials; see method 
section). Third, we looked whether a congru-
ency switch cost could be found when partic-
ipants solve a fraction comparison test. Our 
hypothesis was that, in line with Schmidt and 
Houwer (2011), we would find a congruency 
switch effect in the lower accuracy rates and/
or higher reaction times to correctly solve 
switch items compared to non-switch items. 
Fourth, if a congruency switch cost was found, 
we would investigate whether this switch 
cost was asymmetrical. In line with previous 
research on other tasks (see above), we hy-
pothesized that if there was an asymmetrical 
switch cost, switch costs would be larger go-
ing from an incongruent to a congruent item 
than vice versa. 

Method

Participants
  
In total, data of 136 7th grade students from 
two different middle-sized schools were col-
lected. We chose to collect data in 7th graders 
since in this age group we could still expect 
traces of the natural number bias as well as 
find individual differences in learners’ fraction 
understanding (see for example Van Hoof et 
al., 2017). Put differently, we expected that 
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the majority of learners would not show 
ceiling or floor effects in their fraction un-
derstanding. Both students from general ed-
ucation (n = 109 students; 54 female and 55 
male, age: M = 12.43 years, SD = .64) and from 
vocational education (n = 26, 19 female and 7 
male, age: M = 12.56, SD = .56) were includ-
ed. Parents of all the participants signed an in-
formed consent. Data were collected accord-
ing to the ethical guidelines of the KU Leuven.
 
Procedure
 
Data collection took place in a separate class-
room in groups of 8 participants. Learners 
solved a fraction comparison task in E-Prime. 

At the beginning of the task, the students 
were informed that they would have to 
choose, as accurately and as fast as possible, 
the larger fraction out of two by pressing the 
corresponding key on the keyboard (“f” for 
left and “j” for right). 

Design
 
All participants solved a fraction comparison 
task. Every trial started by a fixation cross 
(1000 ms) followed by two fractions that were 
shown simultaneously on a computer-screen 
(see Figure 1 for item list). All comparison 
items were displayed as black digits on a 
white background.

Block  Type Item 1 Item 2  Block Type Item 1  Item 2 
1 C 13/18 11/18  5 C 3/19 5/19 
 C 31/53 39/53   C 21/58 25/58 
 C 8/21 4/21   C 41/65 48/65 
 C 39/88 31/88   C 59/79 51/79 
 IC 11/13 11/18   IC 5/21 5/16 
 IC 21/68 21/62   IC 38/53 38/59 
 IC 33/97 33/91   IC 4/21 4/25 
 IC 30/49 30/53   IC 39/50 39/44 
2 C 19/94 27/94  6 C 9/11 6/11 
 C 31/63 28/63   C 32/83 38/83 
 C 59/83 71/83   C 39/51 28/51 
 C 37/43 31/43   C 24/67 31/67 
 IC 56/71 56/67   IC 23/74 23/68 
 IC 9/31 9/28   IC 71/97 71/91 
 IC 27/34 27/31   IC 41/62 41/68 
 IC 30/73 30/79   IC 31/90 31/99 
3 C 16/43 10/43  7 C 16/43 20/43 
 C 62/81 68/81   C 16/23 12/23 
 C 5/9 7/9   C 22/39 26/39 
 C 37/95 32/95   C 20/77 30/77 
 IC 9/16 9/13   IC 65/81 65/76 
 IC 12/35 12/47   IC 5/6 5/9 
 IC 19/49 19/44   IC 22/51 22/47 
 IC 54/71 54/77   IC 40/87 40/77 
4 C 24/55 17/55  8 C 48/69 40/69 
 C 43/57 38/57   C 6/17 3/17 
 C 4/29 9/29   C 29/44 35/44 
 C 7/13 11/13   C 15/38 11/38 
 IC 23/34 23/38   IC 48/89 48/95 
 IC 13/19 13/15   IC 29/68 29/74 
 IC 10/43 10/49   IC 49/58 49/55 
 IC 23/50 23/58   IC 21/25 21/29 

 

Figure 1 Item list of the fraction comparison task.



70 Studia Psychologica, Vol. 63, No. 1, 2021, 64-76

Since previous research warned for the 
possible undesired learning effect of adding 
many practice trials (see for example Ros-
si et al., 2019), only four practice trials with 
feedback were included in the experiment. 
This way, we tried to avoid an undesired 
learning effect, but still made sure the par-
ticipants understood the task. The test itself 
contained 32 congruent (fractions with com-
mon denominator) and 32 incongruent items 
(fractions with common numerator), allowing 
to investigate the role of a natural number 
bias. In total, eight blocks of eight items were 
used. Each block consisted of first four con-
gruent items followed by four incongruent 
items. By ordering the items in such a way 
that four congruent items were presented in 
a row, and then four incongruent items in a 
row, we were able to experimentally increase 
participants’ state of inhibition: a prolonged 
exposure to incongruent trials might increase 
participants’ inhibition. Therefore, we com-
pared participants’ performances on every 
second and fourth incongruent trial. We de-
cided not to use the first incongruent trial for 
these comparisons, since this item is a switch 
trial and might be affected by a congruency 
switch (too). With regard to the congruency 
switch effect, due to the design of our fraction 
comparison task (each block consisted of first 
four congruent items followed by four incon-
gruent items), we could distinguish 15 switch 
tasks (7 from incongruent to congruent and 8 
from congruent to incongruent) and 16 stay 
tasks (see Figure 2). This distinction between 

switch tasks and stay tasks made it possible to 
investigate a congruency switch effect and the 
possible asymmetrical nature of this effect. 

As stated above, it is necessary to control 
the item list in a fraction comparison task 
very strictly to prevent unwanted strategies 
to occur, such as gap thinking or benchmark-
ing (see for example Gonzalez-Forte et al., 
2019). Therefore, the fraction comparison 
task was controlled for benchmarking to 0, 
1/2, and 1. This was done by making sure that 
the numerical value of the fractions was nev-
er smaller than 0.1 or larger than 0.9. More-
over, in every set of four comparison items, in 
two fraction pairs both fractions were above 
one half (A) and in two pairs both were be-
low one half (B), leading to six possible com-
binations, which were – as much as possible 
– equally represented: AABB, ABAB, ABBA, 
BBAA, BAAB, BABA. Further, within each set 
of four comparison items, the largest fraction 
appeared twice on the right side and twice on 
the left side of the screen. Next, no numer-
ator or denominator was a multiple of the 
other fractions’ numerator of denominator, 
to avoid the strategy of simply multiplying a 
component. Further, all fractions were be-
low 1, every numeral from 0 until 9 appears 
equally often in the trials and no simplifiable 
fractions were included. At last, two versions 
of the fraction comparison were used. In the 
second version the first and last item of each 
set were swapped, preventing that certain 
item characteristics may have any influence 
on the switch cost.  

   Block 1        Block 2 

 

CON CON CON CON  INC INC INC INC   CON CON CON CON  INC INC INC INC 

 

 

 

Figure 2 Design of the fraction comparison test (2 blocks out of 8). Switch items are highlight-
ed and underlined, stay items are bold, the rest are control items.
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The data that support the findings of this 
study are publicly available at OSF (https://
osf.io/zcx9g/). 

Results

To be able to see a congruency switch effect, 
it was necessary that the participants under-
stood the task and were able to solve both 
congruent and incongruent fraction compari-
son tasks. Therefore, participants who did not 
score above 50% accuracy on both the con-
gruent and incongruent control items were 
not included in the further data analyses. In 
total 33 7th graders were excluded ( = 24.26% 
of the data). 

Moreover, with regard to participants’ re-
action time, we controlled whether all trials 
had a reaction time of at least 500ms. Based 
on our previous studies, we assumed that 
it is impossible for participants to process 
both fractions and compare them in less 
than 500ms. Therefore, reaction times below 
500ms are likely to represent a pressing mis-
take. Further, for each individual participant, 
trials that were three standard deviations 
away from the mean were deleted as outliers. 
In total, 2.14% of the dataset was deleted.   
Since our data had a repeated measures de-
sign, we conducted a Generalized Estimation 
of Equations (GEE) in order to correct for re-
peated (and probably correlated) measures 
within participants (Liang & Zeger, 1986).

Natural Number Bias

Accuracy data

First, we looked at learners’ accuracy data 
by comparing learners’ mean score on con-
gruent versus incongruent items. Given the 
dichotomous nature of participants’ accuracy 
levels, a logistic regression model was run. A 
significant main effect was found of congru-

ency, Wald X² (1, N = 6393) = 36.75, p < .001; 
OR = 1.90, 95% CI [1.60, 2.26], indicating that 
participants’ mean accuracy scores were sig-
nificantly higher on congruent (mean score = 
.93, SD = .25) versus incongruent items (mean 
score = .88, SD = .33).
 
Reaction time data

Second, we looked at learners’ reaction time 
data by comparing learners’ mean time need-
ed to correctly solve congruent versus incon-
gruent items. Given the continuous nature of 
participants’ reaction time, a linear regression 
model was run. A significant main effect of 
congruency was found, Wald X² (1, N = 5775) 
= 31.30, p < .001, d = .55, showing that learn-
ers needed significantly more time to correct-
ly solve incongruent (mean = 3039 ms, SD = 
2097) compared to congruent items (mean = 
2588 ms, SD = 1642).

Inhibition

Accuracy data

First, we looked at learners’ accuracy data by 
comparing learners’ mean score on the sec-
ond and fourth incongruent trial. A significant 
main effect was found of item place, Wald X² (1,  
N = 1586) = 10.99, p < .001; OR = 1.55, 95% 
CI [1.13, 2.11], indicating that participants’ 
mean accuracy scores were significantly high-
er on the fourth (mean score = .91, SD = .29) 
compared to the second incongruent trial 
(mean score = .86, SD = .35).

Reaction time data

Second, we looked at learners’ reaction time 
data by comparing learners’ mean time need-
ed to correctly solve the second versus the 
fourth incongruent item. A significant main 
effect of place item was found, Wald X² (1, 

https://osf.io/zcx9g/
https://osf.io/zcx9g/
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N = 1401) = 30.06, p < .001, d = .55, showing 
that learners needed significantly less time to 
correctly solve the fourth (mean = 2753 ms,  
SD = 1798) compared to the second incongru-
ent item (mean = 3243 ms, SD = 2407).

Congruency Switch Cost

Given that we were interested in comparing 
learners’ performances in switch versus non-
switch items, in the following analyses, only 
the data on the switch and non-switch items 
were included.

Accuracy data

To investigate whether a congruency switch 
could be found in participants’ accuracy data, 
we compared the scores on switch items with 
those on non-switch items. A significant main 
effect was found of switching, Wald X² (1, N = 
3105) = 8.17, p < .01; OR = 2.02, 95% CI [1.59, 
2.58], indicating that participants’ mean accu-
racy scores were significantly higher on non-
switch (mean score = .93, SD = .26) versus 
switch items (mean score = .87, SD = .34). In a 
next step, we looked whether this congruency 
effect had an asymmetrical nature. No signif-
icant interaction effect was found between 
switching and congruency, Wald X² (1, N = 
3105) = 0.03, p = .86, indicating that the con-
gruency switch cost in participants’ accuracy 
scores was equally large going from incongru-
ent to congruent items as vice versa.

Reaction time data

To investigate whether a congruency switch 
could be found in participants’ reaction time 
data, we compared the reaction times partic-
ipants needed to correctly solve switch items 
versus non-switch items. A significant main 
effect of switching was found, Wald X² (1,  
N = 2790) = 14.70, p < .001, d = .38, showing that 

learners needed significantly more time to cor-
rectly solve switch items (mean = 3068 ms, SD =  
1891) compared to non-switch items (mean = 
2543 ms, SD = 1678). Moreover, no significant 
interaction effect was found between switching 
and congruency, Wald X² (1, N = 2790) = .87,  
p = .35, showing that the congruency switch cost 
in participants’ reaction times was equally large 
going from incongruent to congruent items as 
vice versa.

Discussion

Given that previous research repeatedly 
showed the high importance of a good frac-
tion understanding, but at the same time peo-
ple’s lack of fraction understanding, it is im-
portant to investigate the cognitive processes 
that underlie reasoning with fractions. More 
precisely, the present study had two main 
aims. Our first aim was to provide causal evi-
dence for the role of inhibition, specifically in 
fraction comparison tasks. Until now, the role 
of inhibitory control has mostly been inves-
tigated in relation to mathematics achieve-
ment in a general sense, rather than to spe-
cific components of mathematics, such as 
fraction understanding (Van Dooren & Inglis, 
2015; Gilmore et al., 2018). Moreover, most 
of the studies are correlational in nature; re-
search showing the causal relation between 
inhibition and mathematics achievement is 
still missing.  

With regard to fraction comparison tasks, 
starting from a dual process perspective, it is 
suggested that when people have the acquired 
knowledge to solve fraction tasks, an incorrect 
response to a fraction task can be explained by 
two different situations. First, it is possible that 
people incorrectly reason in an intuitive natural 
number based way without the intervention of 
the analytical reasoning system. Second, it is 
possible that the analytical reasoning system 
does intervene, tries to inhibit the intuitive an-
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swer, but fails to generate the correct answer 
(e.g., Gillard et al., 2009). The latter implies that 
inhibition might play a role in learners’ fraction 
understanding, and especially when solving 
fraction tasks that are incongruent with natural 
number reasoning. 

As far as we know, there is only one study 
of Rossi et al. (2019) that investigated the 
role of inhibition in fraction tasks in a causal 
way, using a negative priming paradigm. This 
study concluded that both in adolescents 
and adults the inhibition of natural number 
based reasoning is needed to correctly com-
pare fraction comparison task with common 
components. In the present study, we tried to 
replicate their findings while addressing the 
several shortcomings of this study. 

The second aim of the present study was 
to investigate whether a switch cost could 
be replicated when participants solve a frac-
tion comparison task. Given that strategy 
switch costs have solely been investigated 
(to the best of our knowledge) in numerosi-
ty judgment, computational estimation, and 
two-digit addition tasks, there was a need to 
investigate whether similar switch costs could 
be found in different aspects of mathematics, 
such as fraction understanding. In line with 
Schmidt and Houwer (2011), we referred to 
this switch cost as a congruency switch cost. 

In total, the present study addressed four 
research questions. First, we investigated 
whether our study would confirm learners’ 
struggle to understand fractions by finding 
traces of the natural number bias in learners’ 
accuracy and/or reaction time data. A clear 
indication for the natural number bias was 
found both in participants’ accuracy levels 
(significantly higher on congruent compared 
to incongruent items) and in their reaction 
time data (significantly more time to correctly 
answer incongruent compared to congruent 
items). Second, by experimentally increasing 
a state of inhibition, we investigated wheth-

er inhibition (of natural number reasoning) is 
needed when learners compare fractions. Re-
sults indicated higher accuracy rates and low-
er reaction times needed to correctly solve 
incongruent trials when inhibition is exper-
imentally increased. This result adds to the 
current literature by showing that inhibition 
does not only play a role in learners’ general 
mathematics achievement, but also in specif-
ic areas of the mathematics curriculum, such 
as fractions, and more specifically comparing 
the size of fractions where the straightforward 
application of natural number knowledge 
would lead to the wrong conclusion. Third, 
we looked whether a congruency switch cost 
could be found when participants solve a frac-
tion comparison test. A congruency switch 
effect was found in the lower accuracy rates 
and higher reaction times to correctly solve 
switch items compared to non-switch items. 
Fourth, if a congruency switch cost was found, 
we would investigate whether this switch cost 
was asymmetrical. The results found no asym-
metrical switch cost. 

The present study does not only add new 
knowledge to the research field on strategy 
switch costs by finding that switch costs also 
occur in fraction tasks, but it also addresses 
the current debate in the literature on wheth-
er people process fractions in a componen-
tial or holistic way. The results of the present 
study suggest that adolescents compare frac-
tions in a componential way. If fractions were 
compared in a holistic way, congruency would 
have no effect on the mental processes need-
ed to solve a fraction comparison task. How-
ever, we found that congruency does have an 
effect, and this is also the case when fractions 
are compared in a componential way, given 
that a different strategy is needed to correctly 
solve incongruent/congruent fraction com-
parison tasks. As stated by Obersteiner et al. 
(2013), it is important to note that “the acti-
vated mental representations of fractions are 
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likely to depend on the specific fractions be-
ing processed. Fraction comparison problems 
that involve fraction pairs with common com-
ponents can be solved more efficiently with-
out activating holistic magnitude represen-
tations for the fractions.” (Obersteiner et al., 
2013, p. 65). Therefore, it might be possible 
that different results can be found in fractions 
without common components. This should 
be investigated by future research. Moreover, 
while our results suggest that adolescents use 
componential reasoning, these data should 
be supplemented with interview data to con-
firm that the same strategies are also found 
in participants’ verbal reports when describ-
ing how they solve fraction comparison tasks. 
Moreover, future research should investigate 
whether similar results can be found in oth-
er age groups. Next to the fact that inhibition 
skills mature (e.g., Gilmore, Keeble, Richard-
son, & Cragg, 2015), participants’ level of 
expertise with the task (in our case fraction 
comparisons) can also play a role in the in-
volvement of inhibitory processes (see for ex-
ample Cragg & Gilmore, 2014).

Further, future research should investigate 
the similarities and differences between con-
gruency switch, strategy switch, and task switch 
costs. For example, a big difference between 
congruency and strategy switch on the one 
hand, and task switch on the other hand, is that 
in task switching people need to change their 
goal setting, while this is not the case in the con-
gruency/strategy switch tasks. In the latter, the 
task and therefore the goal remains the same 
between trials, the only difference is the way of 
reaching that goal. Therefore, it might be possi-
ble that the degree in which executive control 
functions, and more specifically shifting, is dif-
ferent in task switching assignments, compared 
to congruency/strategy switch tasks (see for ex-
ample Luwel et al., 2013).

The present study also has an important ed-
ucational implication by showing that inhibition 

plays a role in learners’ fraction understanding. 
Given the crucial importance of fraction under-
standing for later mathematical development, 
this study calls for the need to train learners’ 
inhibition skills. Diamond (2013) does not only 
show that executive functions can be trained, 
but also that they can be improved at any age 
level. Important to note is that it has been 
shown that teachers (especially in the beginning 
of their teaching career) are not aware of the 
importance of executive functions for the learn-
ing of mathematics (Gilmore & Cragg, 2014). 
Therefore, our study suggests that teachers and 
practitioners should be made aware of the im-
portant role of executive functions (such as inhi-
bition) for the learning of fractions and mathe-
matics in general (see also for example Cragg & 
Gilmore, 2014).

Moreover, since a congruency switch cost 
has been found, the present study suggests 
that it is of importance to pay attention to the 
precise order in which fraction tasks are han-
dled in the classroom and to provide feedback 
on the influence of the task characteristics for 
learners’ strategy choice when dealing with 
fractions (see for example Schillemans, Luwel, 
Onghena, & Verschaffel, 2011).
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