Experimental Validation of a High-Speed Tracked Vehicle Powertrain Simulation Model
DOI:
https://doi.org/10.2478/msr-2023-0025Keywords:
high speed tracked vehicle, powertrain, workload analyses, vehicle experimental testing, vehicle dynamicsAbstract
High-speed tracked vehicles have complex powertrains that, in addition to power transfer and transformation, also perform the functions of vehicle steering and braking systems, as well as power supply system for various subsystems on the vehicle. Analyzing the power balance of a tracked vehicle, especially in specific moving scenarios such as the turning process, is of great importance for understanding the power requirements and workload of the powertrain components and their optimization. A simulation model was developed, based on the construction parameters of an experimentally tested high-speed tracked vehicle to reduce the time and material resources required for experimental testing. Both the simulation and experimental tests were conducted using the same input parameters and driving conditions for different vehicle turning scenarios. Simulation and experimental test results are compared to verify the accuracy of the simulation model. The analysis of the obtained results shows that the average value of the relative rpm error is about 5%, the average value of the relative torque error is about 7%, while the average value of the relative power error is about 6.5%.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Slovak Academy of Sciences - Institute of Measurement Science
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.