Advanced Computer Vision Techniques for Accurate Measurement in Unmanned Mobile Robots

Authors

  • Bharathi V Kongunadu College of Engineering and Technology, Thottiyam, India
  • Natraj N A Symbiosis Institute of Digital and Telecom Management, Symbiosis International (Deemed University), Lavale, Pune, India https://orcid.org/0000-0002-8726-5284
  • Gopinath S Department of ECE, Karpagam Institute of Technology, Coimbatore, India https://orcid.org/0000-0002-2115-6181
  • Kiruthikaa R Department of Electronics and Communication Engineering, KGISL Institute of Technology, Coimbatore, India https://orcid.org/0009-0006-8748-7254

DOI:

https://doi.org/10.2478/msr-2024-0025

Keywords:

computer vision, digital image processing, image recognition, data extraction, artificial intelligence

Abstract

For years, researchers have been studying computer vision, i.e. the ability of artificial intelligence (AI) systems to perceive and interpret visual data like humans. This study is gaining increasing attention as researchers aim to develop tools that automate visual tasks and replicate human visual awareness. However, the interpretation of images is very complex due to the vast amount of multi-resolution information they contain, making the development of AI technologies for visual recognition particularly challenging. This article provides an overview of digital image processing, highlighting the main concepts and introducing key algorithms. These methods are designed to capture, process, and interpret digital images and enable the extraction of important data from real-world environments. We conduct rigorous image processing tests and compare AI-driven recognition systems with human analysis. The results show that computer vision technology significantly outperforms human observation in terms of accuracy and consistency. These results highlight the potential of computer vision to revolutionize various industries by automating complex visual tasks and offer promising future applications in areas such as healthcare, security, and manufacturing. The paper provides valuable insights into current advances in digital image processing and the role of AI in improving visual recognition capabilities, paving the way for further innovation in this area.

Downloads

Published

30.10.2024

How to Cite

V, B., N A, N., S, G., & R, K. (2024). Advanced Computer Vision Techniques for Accurate Measurement in Unmanned Mobile Robots. Measurement Science Review, 24(5), 188–192. https://doi.org/10.2478/msr-2024-0025